Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập nghiệm của bất phương trình \(\left| {\cfrac{{3x - 9}}{{x + 1}}} \right| \ge 1\) là

Câu hỏi số 315552:
Vận dụng

Tập nghiệm của bất phương trình \(\left| {\cfrac{{3x - 9}}{{x + 1}}} \right| \ge 1\) là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:315552
Phương pháp giải

Bình phương hai vế, lập bảng xét dấu và giải bất phương trình

Giải chi tiết

ĐKXĐ: \(x \ne  - 1\)

\(\begin{array}{l}\left| {\frac{{3x - 9}}{{x + 1}}} \right| \ge 1 \Leftrightarrow \frac{{9{x^2} - 54x + 81}}{{{x^2} + 2x + 1}} \ge 1 \Leftrightarrow \frac{{8{x^2} - 56x + 80}}{{{{\left( {x + 1} \right)}^2}}} \ge 0\\ \Leftrightarrow 8{x^2} - 56x + 80 \ge 0\;\;\left( {do\;\;{{\left( {x + 1} \right)}^2} > 0\;\;\forall x \ne 1} \right)\\ \Leftrightarrow 8\left( {x - 5} \right)\left( {x - 2} \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge 5\\x \le 2\end{array} \right..\end{array}\)            

Vậy tập nghiệm của bất phương trình là: \(\left( { - \infty ;2} \right] \cup \left[ {5; + \infty } \right)\backslash \left\{ { - 1} \right\}.\)

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com