Cho đường tròn \(\left( O \right)\) có dây cung CD cố định. Gọi M là điểm nằm chính giữa cung
Cho đường tròn \(\left( O \right)\) có dây cung CD cố định. Gọi M là điểm nằm chính giữa cung nhỏ CD. Đường kính MN của đường tròn \(\left( O \right)\) cắt dây CD tại I. Lấy điểm E bất kỳ trên cung lớn CD (E khác C,D,N); ME cắt CD tại K. Các đường thẳng NE và CD cắt nhau tại P.
a) Chứng minh rằng: Tứ giác IKEN nội tiếp.
b) Chứng minh: \(EI.MN = NK.ME\).
c) NK cắt MP tại Q. Chứng minh: IK là phân giác của \(\angle EIQ\).
d) Từ C vẽ đường thẳng vuông góc với EN cắt đường thẳng DE tại H. Chứng minh khi E di động trên cung lớn CD (E khác C, D, N) thì H luôn chạy trên một đường cố định.
Quảng cáo
+) Chứng minh IKEN là tứ giác có tổng hai góc đối bằng \({180^o}\)
+) Chứng minh \(\Delta MEI \sim \Delta MNK\) (g.g) để suy ra đpcm
+) Chứng minh tứ giác NIQP nội tiếp kết hợp a) để suy ra \(\angle QIP = \angle EIK\) từ đó ta được đpcm
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










