Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân giác góc A là

Câu hỏi số 318259:
Vận dụng

Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân giác góc A là \(\dfrac{x}{1} = \dfrac{{y - 6}}{{ - 4}} = \dfrac{{z - 6}}{{ - 3}}\). Biết rằng điểm \(M\left( {0;5;3} \right)\) thuộc đường thẳng AB và điểm \(N\left( {1;1;0} \right)\) thuộc đường thẳng AC. Vectơ nào sau đây là vectơ chỉ phương của đường thẳng AC

Đáp án đúng là: D

Quảng cáo

Câu hỏi:318259
Phương pháp giải

Xác định tọa độ điểm \(M'\) là điểm đối xứng của M qua đường phân giác góc A. Khi đó,  \(M \in AC \Rightarrow AC\) nhận \(\overrightarrow {M'N} \) là 1 VTCP.

Giải chi tiết

Gọi \(M'\) là điểm đối xứng của M  qua đường phân giác của góc A  \(\left( d \right)\), I  là giao điểm của MM’d.

Giả sử \(I\left( {t;6 - 4t;6 - 3t} \right) \in \left( d \right) \Rightarrow \overrightarrow {MI}  = \left( {t;1 - 4t;3 - 3t} \right)\).

Vì \(MM' \bot d \Rightarrow MI \bot d \Rightarrow \overrightarrow {MI} .\overrightarrow {{u_d}}  = 0\)

\(\begin{array}{l} \Leftrightarrow t.1 + \left( {1 - 4t} \right).\left( { - 4} \right) + \left( {3 - 3t} \right).\left( { - 3} \right) = 0\\ \Leftrightarrow t - 4 + 16t - 9 + 9t = 0 \Leftrightarrow t = \dfrac{1}{2} \Rightarrow I\left( {\dfrac{1}{2};4;\dfrac{9}{2}} \right)\end{array}\) 

I là trung điểm của MM’ \( \Rightarrow \left\{ \begin{array}{l}0 + {x_{M'}} = 2.\dfrac{1}{2}\\5 + {y_{M'}} = 2.4\\3 + {z_{M'}} = 2.\dfrac{9}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{M'}} = 1\\{y_{M'}} = 3\\{z_{M'}} = 6\end{array} \right.\, \Rightarrow M'\left( {1;3;6} \right)\)

Đường thẳng AC nhận \(\overrightarrow {M'N}  = \left( {0; - 2; - 6} \right)\) là 1 VTCP

\( \Rightarrow \overrightarrow u \left( {0;1;3} \right)\) là 1 VTCP của đường thẳng AC.

Chọn: D

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com