Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện ABCD có \(AB=AC=AD= a,\) \(\widehat {BAC} = {60^0},\) \(\widehat {CAD} = {60^0},\) \(\widehat {DAB} =

Câu hỏi số 318950:
Vận dụng

Cho tứ diện ABCD có \(AB=AC=AD= a,\) \(\widehat {BAC} = {60^0},\) \(\widehat {CAD} = {60^0},\) \(\widehat {DAB} = {90^0}.\) Khoảng cách giữa hai đường thẳng \(AC\) và \(BD\)  là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:318950
Phương pháp giải

Sử dụng định lý Py-ta-go và hệ thức lượng trong tam giác vuông để làm bài toán.

Giải chi tiết

Ta có: \(\angle BAC = \angle CAD = {60^0},\,\,AB = AC = AD = A\)

\( \Rightarrow \Delta ABC,\,\,\,\Delta ACD\) đều \( \Rightarrow BC = CD = a.\)

Có \(\angle BAD = {90^0} \Rightarrow BD = \sqrt {A{B^2} + A{{\rm{D}}^2}}  = a\sqrt 2 .\)

\( \Rightarrow \Delta BCD\) vuông cân tại \(C.\)

Gọi \(H\) là trung điểm của \(BD.\) Kẻ \(KH \bot AC.\)

\( \Rightarrow \left\{ \begin{array}{l}CH \bot BD\\AH \bot BD\end{array} \right. \Rightarrow BD \bot \left( {CAH} \right) \Rightarrow BD \bot KH\)

\( \Rightarrow d\left( {AC,\,BD} \right) = KH.\)

Xét \(\Delta AHC\) vuông tại \(H\) có đường cao \(KH\) ta có:

\(KH = \frac{{HC.AH}}{{\sqrt {H{C^2} + H{A^2}} }} = \frac{{\frac{1}{4}B{D^2}}}{{\sqrt {\frac{1}{4}B{D^2} + \frac{1}{4}B{D^2}} }} = \frac{{\sqrt 2 }}{4}BD = \frac{{\sqrt 2 }}{4}.a\sqrt 2  = \frac{a}{2}.\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com