Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho các số thực \(a,\,b,\,c,\,d\) thay đổi, luôn thỏa mãn \({\left( {a - 1} \right)^2} + {\left( {b - 2}

Câu hỏi số 319351:
Vận dụng

Cho các số thực \(a,\,b,\,c,\,d\) thay đổi, luôn thỏa mãn \({\left( {a - 1} \right)^2} + {\left( {b - 2} \right)^2} = 1\) và \(4c - 3d - 23 = 0.\) Giá trị nhỏ nhất của biểu thức \(P = {\left( {a - c} \right)^2} + {\left( {b - d} \right)^2}\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:319351
Phương pháp giải

+) Gọi \(M\left( {a;b} \right),\,\,N\left( {c;d} \right) \Rightarrow P = M{N^2}\).

+) Xác định giá trị nhỏ nhất của \(MN\).

Giải chi tiết

 

Gọi \(M\left( {a;b} \right),\,\,N\left( {c;d} \right)\)

Khi đó ta có \(M\) thuộc đường tròn \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 1\,\,\left( C \right)\) và \(N\) thuộc đường thẳng \(4x - 3y - 23 = 0\,\,\left( d \right)\)

Ta có: \(P = {\left( {a - c} \right)^2} + {\left( {b - d} \right)^2} = M{N^2}\)

Đường tròn \(\left( C \right)\) có tâm \(I\left( {1;2} \right),\) bán kính \(R = 1\).

Ta có \(d\left( {I;d} \right) = \dfrac{{\left| {4.1 - 3.2 - 23} \right|}}{{\sqrt {{4^2} + {3^2}} }} = \dfrac{{25}}{5} = 5 > R \Rightarrow d\) không cắt \(\left( C \right)\).

Khi đó \(M{N_{\min }} = d\left( {I;d} \right) - R = 5 - 1 = 4 \Rightarrow {P_{\min }} = {4^2} = 16\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com