Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) đáy là hình thoi tâm \(O\) và \(SO \bot \left( {ABCD} \right)\), \(SO = \dfrac{{a\sqrt

Câu hỏi số 319369:
Vận dụng

Cho hình chóp \(S.ABCD\) đáy là hình thoi tâm \(O\) và \(SO \bot \left( {ABCD} \right)\), \(SO = \dfrac{{a\sqrt 6 }}{3},\,\,BC = SB = a\). Số đo góc giữa 2 mặt phẳng \(\left( {SBC} \right)\) và \(\left( {SCD} \right)\) là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:319369
Phương pháp giải

+) Gọi \(M\) là trung điểm của \(SC\). Chứng minh \(\angle \left( {\left( {SBC} \right);\left( {SCD} \right)} \right) = \angle \left( {BM;DM} \right)\).

+) Tính các cạnh \(BM,\,\,DM,\,\,BD\) và sử dụng định lí cosin trong tam giác \(BDM\).

Giải chi tiết

Gọi \(M\) là trung điểm của \(SC\).

Tam giác \(SBC\) cân tại \(B \Rightarrow BM \bot SC\).

Xét tam giác \(SBD\) có \(SO\) là trung tuyến đồng thời là đường cao \( \Rightarrow \Delta SBC\) cân tại \(S \Rightarrow SB = SD = a\).

\(\Delta SCD\) có \(SD = CD = a \Rightarrow \Delta SCD\) cân tại \(D \Rightarrow DM \bot SC\).

Ta có: \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {SCD} \right) = SC\\\left( {SBC} \right) \supset BM \bot SC\\\left( {SCD} \right) \supset DM \bot SC\end{array} \right. \Rightarrow \angle \left( {\left( {SBC} \right);\left( {SCD} \right)} \right) = \angle \left( {BM;DM} \right)\).

Xét chóp \(B.SAC\) ta có \(BC = BS = BA = a \Rightarrow \) Hình chiếu của \(B\) lên  \(\left( {SAC} \right)\) trùng với tâm đường tròn ngoại tiếp \(\Delta SAC\).

Ta có \(\left\{ \begin{array}{l}BO \bot AC\,\,\left( {gt} \right)\\BO \bot SO\,\,\left( {SO \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow BO \bot \left( {SAC} \right) \Rightarrow O\) là tâm đường tròn ngoại tiếp \(\Delta SAC\).

\( \Rightarrow \Delta SAC\) vuông cân tại \(S \Rightarrow AC = 2SO = \dfrac{{2a\sqrt 6 }}{3} \Rightarrow SA = SC = \dfrac{{AC}}{{\sqrt 2 }} = \dfrac{{2a\sqrt 3 }}{3}\).

Xét tam giác vuông \(OAB\) có \(OB = \sqrt {A{B^2} - O{A^2}}  = \sqrt {{a^2} - \dfrac{{2{a^2}}}{3}}  = \dfrac{{a\sqrt 3 }}{3}\)\( \Rightarrow BD = 2OB = \dfrac{{2a\sqrt 3 }}{3}\).

Xét tam giác vuông \(BCM:\,\,BM = \sqrt {B{C^2} - M{C^2}}  = \sqrt {{a^2} - \dfrac{{{a^2}}}{3}}  = \dfrac{{a\sqrt 6 }}{3} = DM\).

Áp dụng định lí Cosin trong tam giác \(BDM\) ta có:

\(\cos \angle BMD = \dfrac{{B{M^2} + D{M^2} - B{D^2}}}{{2BM.DM}} = \dfrac{{\dfrac{{2{a^2}}}{3} + \dfrac{{2{a^2}}}{3} - \dfrac{{4{a^2}}}{3}}}{{2.\dfrac{{2{a^2}}}{3}}} = 0 \Rightarrow \angle BMD = {90^0}\).

Vậy \(\angle \left( {\left( {SBC} \right);\left( {SCD} \right)} \right) = {90^0}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com