Cho số phức \(z\) thỏa mãn \(\left| {z - 1 + 2i} \right| = 2.\) Biết rằng tập hợp các điểm biểu
Cho số phức \(z\) thỏa mãn \(\left| {z - 1 + 2i} \right| = 2.\) Biết rằng tập hợp các điểm biểu diễn số phức \({\rm{w}} = 3 - 2i + \left( {2 - i} \right)z\) là một đường tròn. Tính bán kính \(R\) của đường tròn đó.
Đáp án đúng là: C
Quảng cáo
+) Rút \(z\) theo \(w\), thay vào giả thiết xác định tập hợp các điểm \(w\).
+) Tập hợp các điểm biểu diễn số phức \(z\) thỏa mãn điều kiện \(\left| {z - \left( {a + bi} \right)} \right| = R\) là đường tròn tâm \(I\left( {a;b} \right)\), bán kính \(R\).
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












