Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {x + 6} - a}}{{\sqrt {x + 1} -
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {x + 6} - a}}{{\sqrt {x + 1} - 2}}\,\,\,\,\,\,\,\,\,khi\,\,x \ne 3\\{x^3} - \left( {2b + 1} \right)x\,\,\,khi\,\,x = 3\end{array} \right.\). Trong đó \(a\) và \(b\)là các tham số thực. Biết hàm số liên tục tại \(x = 3\). Số nhỏ hơn trong hai số \({\rm{a}}\) và \(b\) là?
Đáp án đúng là: B
Quảng cáo
Tính \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) \,;\,\,f\left( 3 \right)\)
Đáp án cần chọn là: B
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












