Cho \(a\) và \(b\) là các số thực khác 0. Tìm hệ thức liên hệ giữa \(a\) và \(b\) để hàm
Cho \(a\) và \(b\) là các số thực khác 0. Tìm hệ thức liên hệ giữa \(a\) và \(b\) để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {ax + 1} \sqrt[3]{{bx + 1}} - 1}}{x}\,\,\,{\rm{khi}}\,\,x \ne 0\\a + b\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x = 0\end{array} \right.\) liên tục tại \(x = 0?\)
Đáp án đúng là: C
Quảng cáo
Tính \(\mathop {\lim }\limits_{x \to {0^{}}} f(x)\) để hàm số liên tục tại \(x = 0\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to 0} f(x) = f\left( 0 \right)\)
Đáp án cần chọn là: C
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












