Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Xác định \(a,b\)để các hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{{x^3} - 3{x^2} + 2x}}{{x(x -

Câu hỏi số 323636:
Vận dụng

Xác định \(a,b\)để các hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{{x^3} - 3{x^2} + 2x}}{{x(x - 2)}}{\rm{\,\,\,khi }}\,\,\,x \ne 0,\,\,x \ne 2\\a{\rm{\,\,\,\,\,khi }}\,\,\,x = 2\\b{\rm{ \,\,\,\,\,khi }}\,\,x = 0\end{array} \right.\,\)  liên tục trên \(\mathbb{R}\). Tính giá trị \({a^3} + {b^3}\) có kết quả?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:323636
Phương pháp giải

Xét tính liên tục của \(f\left( x \right)\) tại \(x = 0;\,x = 2.\)

Hàm số \(y = f\left( x \right)\)  liên tục tại điểm \(x = {x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = f\left( {{x_0}} \right).\)  

Giải chi tiết

Hàm số liên tục trên các khoảng \(\left( { - \infty ;0} \right);\,\,\left( {0;2} \right) ;\,\left( {2; + \infty } \right)\) .

Ta có: \(f\left( 0 \right) = b;\,\,\,f\left( 2 \right) = a.\)

 \(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^3} - 3{x^2} + 2x}}{{x(x - 2)}} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 1} \right)\left( {x - 2} \right)}}{{x\left( {x - 2} \right)}} = \mathop {\lim }\limits_{x \to 0} \left( {x - 1} \right) =  - 1\\\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 3{x^2} + 2x}}{{x(x - 2)}} = \mathop {\lim }\limits_{x \to 2} \frac{{x\left( {x - 1} \right)\left( {x - 2} \right)}}{{x\left( {x - 2} \right)}} = \mathop {\lim }\limits_{x \to 2} \left( {x - 1} \right) = 1\end{array}\)

\( \Rightarrow \) Hàm số liên tục trên \(\mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right)\\\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  - 1\end{array} \right..\)

Khi đó:  \({a^3} + {b^3} = {1^3} + {\left( { - 1} \right)^3} = 0.\)

Chọn D.

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com