Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình vuông cạnh bằng \(a,\,\,SA\) vuông góc với mặt phẳng

Câu hỏi số 324502:
Thông hiểu

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình vuông cạnh bằng \(a,\,\,SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\) và \(SA = a\). Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:324502
Phương pháp giải

+) Trong \(\left( {SAB} \right)\) kẻ \(AH \bot SB\,\,\left( {H \in SB} \right)\). Chứng minh \(d\left( {A;\left( {SBC} \right)} \right) = AH\).

+) Xét tam giác vuông \(SAB\). Tính \(AH\).

Giải chi tiết

Trong \(\left( {SAB} \right)\) kẻ \(AH \bot SB\,\,\left( {H \in SB} \right)\).

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot AH\\\left\{ \begin{array}{l}AH \bot SB\\AH \bot BC\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = AH\end{array}\)

Tam giác \(SAB\) có \(SA \bot AB\,\,\left( {SA \bot \left( {ABCD} \right)} \right),\,\,SA = AB = a \Rightarrow \Delta SAB\) vuông cân tại \(A\) \( \Rightarrow AH = \dfrac{a}{{\sqrt 2 }}\).

 

Vậy \(d\left( {A;\left( {SBC} \right)} \right) = \dfrac{{a\sqrt 2 }}{2}\).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com