Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giá trị \(\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^{2018}} + x - 2}}{{{x^{2017}} + x - 2}}\) bằng

Câu hỏi số 324532:
Vận dụng

Giá trị \(\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^{2018}} + x - 2}}{{{x^{2017}} + x - 2}}\) bằng \(\dfrac{a}{b}\) với \(\dfrac{a}{b}\) là phân số tối giản. Tính giá trị của \({a^2} - {b^2}\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:324532
Phương pháp giải

Phân tích, rút gọn để khử dạng \(\dfrac{0}{0}\).

Giải chi tiết

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^{2018}} + x - 2}}{{{x^{2017}} + x - 2}} = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^{2018}} - 1 + x - 1}}{{{x^{2017}} - 1 + x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {x - 1} \right)\left( {{x^{2017}} + {x^{2016}} + ... + 1} \right) + x - 1}}{{\left( {x - 1} \right)\left( {{x^{2016}} + {x^{2015}} + ... + 1} \right) + x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {x - 1} \right)\left( {{x^{2017}} + {x^{2016}} + ... + 1 + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^{2016}} + {x^{2015}} + ... + 1 + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^{2017}} + {x^{2016}} + ... + 1 + 1}}{{{x^{2016}} + {x^{2015}} + ... + 1 + 1}} = \dfrac{{2018}}{{2017}}\\ \Rightarrow a = 2018,\,\,b = 2017\\ \Rightarrow {a^2} - {b^2} = {2018^2} - {2017^2} = \left( {2018 - 2017} \right)\left( {2018 + 2017} \right) = 4035\end{array}\)

Chọn B.

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com