Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình \({m^2}\left( {x - 2} \right)

Câu hỏi số 324704:
Vận dụng cao

Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình \({m^2}\left( {x - 2} \right) - mx + x + 5 < 0\) nghiệm đúng với mọi \(x \in \left[ { - 2018;2} \right]\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:324704
Phương pháp giải

+) Tìm tập nghiệm \(S\) của bất phương trình.

+) Để bất phương trình nghiệm đúng với mọi \(x \in \left[ { - 2018;2} \right]\) \( \Rightarrow \left[ { - 2018;2} \right] \subset S\).

Giải chi tiết

\({m^2}\left( {x - 2} \right) - mx + x + 5 < 0 \Leftrightarrow \left( {{m^2} - m + 1} \right)x < 2{m^2} - 5\)

Vì \({m^2} - m + 1 = {\left( {m - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0\,\,\forall m\)

Do đó \(bpt \Leftrightarrow x < \dfrac{{2{m^2} - 5}}{{{m^2} - m + 1}}\) \( \Rightarrow \) Tập nghiệm của bất phương trình là \(S = \left( { - \infty ;\dfrac{{2{m^2} - 5}}{{{m^2} - m + 1}}} \right)\).

Để bất phương trình nghiệm đúng với mọi \(x \in \left[ { - 2018;2} \right]\) \( \Rightarrow \left[ { - 2018;2} \right] \subset S\).

\( \Rightarrow 2 < \dfrac{{2{m^2} - 5}}{{{m^2} - m + 1}} \Leftrightarrow 2{m^2} - 2m + 2 < 2{m^2} - 5 \Leftrightarrow  - 2m <  - 7 \Leftrightarrow m > \dfrac{7}{2}\).

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com