Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Chọn đáp án đúng nhất:

Chọn đáp án đúng nhất:

Trả lời cho các câu 1, 2, 3 dưới đây:

Câu hỏi số 1:
Vận dụng
Tìm \(m\) thỏa mãn bất phương trình \({x^2} + 2mx - m + 2 > 0\) nghiệm đúng với \(\forall x \in \mathbb{R}\).

Đáp án đúng là: A

Câu hỏi:327543
Phương pháp giải

Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) có biệt thức \(\Delta  = {b^2} - 4ac\)

-  Nếu \(\Delta  < 0\) thì với mọi \(x,f\left( x \right)\) có cùng dấu với hệ số a.

-  Nếu \(\Delta  = 0\)thì \(f\left( x \right)\) có nghiệm kép \(x =  - \frac{b}{{2a}}\), với mọi \(x \ne  - \frac{b}{{2a}},\,\,f\left( x \right)\) có cùng dấu với hệ số a.

- Nếu \(\Delta  > 0\),\(f\left( x \right)\)có 2 nghiệm \({x_1},{x_2}\,\,\left( {{x_1} < {x_2}} \right)\) và luôn cùng dấu với hệ số a với mọi x ngoài khoảng  \(\left( {{x_1};\,{x_2}} \right)\) và luôn trái dấu với hệ số a với mọi x trong khoảng \(\left( {{x_1};\,{x_2}} \right).\)

Giải chi tiết

Ta có: \(\Delta ' = {m^2} + m - 2\)

Bất phương trình \({x^2} + 2mx - m + 2 > 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\).

\( \Leftrightarrow \Delta ' < 0 \Leftrightarrow {m^2} + m - 2 < 0 \Leftrightarrow \left( {m + 2} \right)\left( {m - 1} \right) < 0 \Leftrightarrow  - 2 < m < 1\)

Vậy với \( - 2 < m < 1\) thỏa mãn yêu cầu đề bài.

Đáp án cần chọn là: A

Câu hỏi số 2:
Vận dụng
Giải bất phương trình \(\sqrt {x + 9}  < x + 3\)

Đáp án đúng là: D

Câu hỏi:327544
Phương pháp giải

\(\sqrt {f\left( x \right)}  < g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) \ge 0\\g\left( x \right) > 0\\f\left( x \right) < {g^2}\left( x \right)\end{array} \right.\)

Giải chi tiết

\(\sqrt {x + 9}  < x + 3 \Leftrightarrow \left\{ \begin{array}{l}x + 9 \ge 0\\x + 3 > 0\\x + 9 < {x^2} + 6x + 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 9\\x >  - 3\\{x^2} + 5x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x >  - 3\\\left[ \begin{array}{l}x > 0\\x <  - 5\end{array} \right.\end{array} \right. \Leftrightarrow x > 0\)

Vậy tập nghiệm của BPT là \(\left( {0; + \infty } \right).\)

Đáp án cần chọn là: D

Câu hỏi số 3:
Vận dụng
Cho các góc \(\alpha ,\beta \) thỏa mãn \(0 < \alpha  < \frac{\pi }{2} < \beta  < \pi \) và \(\sin \alpha  = \frac{1}{3},\sin \beta  = \frac{2}{3}\). Tính \(\sin \left( {\alpha  + \beta } \right)\)

Đáp án đúng là: C

Câu hỏi:327545
Phương pháp giải

Áp dụng công thức \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) để tính \(\cos \alpha ,\cos \beta \), từ đó tính \(\sin \left( {\alpha  + \beta } \right)\) bằng công thức cộng.

Giải chi tiết

Ta có \(\sin \alpha  = \frac{1}{3} \Rightarrow {\sin ^2}\alpha  = \frac{1}{9} \Rightarrow {\cos ^2}\alpha  = 1 - \frac{1}{9} = \frac{8}{9}\)

Do \(0 < \alpha  < \frac{\pi }{2} \Rightarrow \cos \alpha  > 0 \Rightarrow \cos \alpha  = \frac{{2\sqrt 2 }}{3}\)

Ta có \(\sin \beta  = \frac{2}{3} \Rightarrow {\sin ^2}\beta  = \frac{4}{9} \Rightarrow {\cos ^2}\beta  = 1 - \frac{4}{9} = \frac{5}{9}\)

Do \(\frac{\pi }{2} < \beta  < \pi  \Rightarrow \cos \beta  < 0 \Rightarrow \cos \beta  =  - \frac{{\sqrt 5 }}{3}\)

Vậy \(\sin \left( {\alpha  + \beta } \right) = \sin \alpha \cos \beta  + \cos \alpha \sin \beta  = \frac{1}{3}.\left( { - \frac{{\sqrt 5 }}{3}} \right) + \frac{{2\sqrt 2 }}{3}.\frac{2}{3} = \frac{{4\sqrt 2  - \sqrt 5 }}{9}\)

Đáp án cần chọn là: C

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com