Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(2a\) và cạnh bên bằng \(a\sqrt 5 \). Gọi \(\left( P

Câu hỏi số 330071:
Vận dụng

Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(2a\) và cạnh bên bằng \(a\sqrt 5 \). Gọi \(\left( P \right)\) là mặt phẳng đi qua \(A\) và vuông góc với \(SC\). Gọi \(\beta \) là góc tạo bởi mp\(\left( P \right)\) và \(\left( {ABCD} \right)\). Tính \(\tan \beta \).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:330071
Phương pháp giải

Sử dụng lý thuyết: Góc giữa hai mặt phẳng bằng góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng ấy.

Giải chi tiết

Gọi \(O\) là tâm hình vuông \(ABCD\).

Ta có: \(\left\{ \begin{array}{l}SO \bot \left( {ABCD} \right)\\SC \bot \left( P \right)\end{array} \right.\) \( \Rightarrow \) góc giữa \(\left( {ABCD} \right)\) và \(\left( P \right)\) là góc giữa \(SC\) và \(SO\) hay \(\widehat {CSO}\).

Hình vuông \(ABCD\) cạnh \(2a\) nên \(OC = \dfrac{1}{2}AC = \dfrac{1}{2}.2a\sqrt 2  = a\sqrt 2 \).

Tam giác \(SOC\) vuông tại \(O\) nên \(SO = \sqrt {S{C^2} - O{C^2}}  = \sqrt {5{a^2} - 2{a^2}}  = a\sqrt 3 \).

\( \Rightarrow \tan \beta  = \tan \widehat {CSO} = \dfrac{{OC}}{{SO}} = \dfrac{{a\sqrt 2 }}{{a\sqrt 3 }} = \dfrac{{\sqrt 6 }}{3}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com