Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biết rằng phương trình \({x^5} + {x^3} + 3x - 1 = 0\) có ít nhất 1 nghiệm \({x_0},\) mệnh đề nào

Câu hỏi số 331688:
Thông hiểu

Biết rằng phương trình \({x^5} + {x^3} + 3x - 1 = 0\) có ít nhất 1 nghiệm \({x_0},\) mệnh đề nào dưới đây đúng ?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:331688
Phương pháp giải

Hàm số \(y = f\left( x \right)\) liên tục trên \(\left( {a;b} \right)\) và có \(f\left( a \right).f\left( b \right) < 0 \Rightarrow \) Phương trình \(f\left( x \right) = 0\) có ít nhất 1 nghiệm \({x_0} \in \left( {a;b} \right)\).

Giải chi tiết

Hàm số \(y = {x^5} + {x^3} + 3x - 1\) liên tục trên \(\mathbb{R}\) nên hàm số liên tục trên \(\left( {0;1} \right)\).

Ta có: \(\left\{ \begin{array}{l}f\left( 0 \right) =  - 1\\f\left( 1 \right) = 4\end{array} \right. \Rightarrow f\left( 0 \right).f\left( { - 1} \right) < 0 \Rightarrow \) Tồn tại ít nhất 1 nghiệm \({x_0} \in \left( {0;1} \right)\).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com