Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \({u_1} = 1\) và \({u_{n + 1}} = 2{u_n} + \frac{1}{2}\)

Câu hỏi số 331846:
Vận dụng

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \({u_1} = 1\) và \({u_{n + 1}} = 2{u_n} + \frac{1}{2}\) với mọi \(n \ge 1\). Khi nó \(\lim {u_n}\) bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:331846
Phương pháp giải

Xác định công thức tổng quát của \(\left( {{u_n}} \right)\) sau đó tính giới hạn của dãy số.

Đặt \({v_n} = {u_n} + \frac{1}{2}\). Ta có: \({v_{n + 1}} = {u_{n + 1}} + \frac{1}{2} = 2{u_n} + \frac{1}{2} + \frac{1}{2} = 2\left( {{u_n} + \frac{1}{2}} \right) = 2{v_n}\)

Giải chi tiết

Đặt \({v_n} = {u_n} + \frac{1}{2}\).  Ta có: \({v_{n + 1}} = {u_{n + 1}} + \frac{1}{2} = 2{u_n} + \frac{1}{2} + \frac{1}{2} = 2\left( {{u_n} + \frac{1}{2}} \right) = 2{v_n}\)

Vậy \(\left( {{v_n}} \right)\) là cấp số nhân có \({v_1} = \frac{3}{2}\) và \(q = 2\).

Vậy \({v_n} = \frac{3}{2}{.2^{n - 1}} = {3.2^{n - 2}}\).

Do đó \(\lim {v_n} = \lim \left( {{{3.2}^{n - 2}}} \right) =  + \infty \). Suy ra \(\lim {u_n} =  + \infty \).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com