Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp tứ giác đều có cạnh đáy bằng \(a\sqrt 2 \) và chiều cao bằng \(\dfrac{{a\sqrt 2

Câu hỏi số 332503:
Vận dụng

Cho hình chóp tứ giác đều có cạnh đáy bằng \(a\sqrt 2 \) và chiều cao bằng \(\dfrac{{a\sqrt 2 }}{2}\). Tính số đo của góc giữa mặt bên và đáy?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:332503
Phương pháp giải

Góc giữa hai mặt phẳng là góc giữa 2 đường thẳng lần lượt thuộc 2 mặt phẳng và vuông góc với giao tuyến của 2 mặt phẳng đó.

Giải chi tiết

Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\) và \(SO = \dfrac{{a\sqrt 2 }}{2}\).

Gọi \(M\) là trung điểm của \(CD\) ta có:

\(OM\) là đường trung bình của tam giác \(ACD \Rightarrow OM//AD\) và \(OM = \dfrac{1}{2}AD = \dfrac{1}{2}a\sqrt 2 \).

Mà \(AD \bot CD \Rightarrow OM \bot CD\).

\(\left\{ \begin{array}{l}CD \bot OM\\CD \bot SO\end{array} \right. \Rightarrow CD \bot \left( {SOM} \right) \Rightarrow CD \bot SM\)

Ta có: \(\left\{ \begin{array}{l}\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\\left( {SCD} \right) \supset SM \bot CD\,\,\left( {cmt} \right)\\\left( {ABCD} \right) \supset OM \bot CD\,\,\left( {cmt} \right)\end{array} \right. \Rightarrow \angle \left( {\left( {SCD} \right);\left( {ABCD} \right)} \right) = \angle \left( {SM;OM} \right) = \angle SMO\).

Xét tam giác vuông \(SOM\) có \(SO = OM = \dfrac{{a\sqrt 2 }}{2} \Rightarrow \Delta SOM\) vuông cân tại \(O\).

\( \Rightarrow \angle SMO = {45^0}\) . Vậy \(\angle \left( {\left( {SCD} \right);\left( {ABCD} \right)} \right) = {45^0}\).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com