Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tính giới hạn \(L = \mathop {\lim }\limits_{x \to {a^ + }} \left( {x - a} \right)\dfrac{{2017}}{{{x^2} - 2ax +

Câu hỏi số 332514:
Vận dụng

Tính giới hạn \(L = \mathop {\lim }\limits_{x \to {a^ + }} \left( {x - a} \right)\dfrac{{2017}}{{{x^2} - 2ax + {a^2}}}\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:332514
Phương pháp giải

Xét giới hạn dạng \(\dfrac{M}{0}\) với \(M \ne 0\).

Giải chi tiết

\(\begin{array}{l}L = \mathop {\lim }\limits_{x \to {a^ + }} \left( {x - a} \right)\dfrac{{2017}}{{{x^2} - 2ax + {a^2}}}\\L = \mathop {\lim }\limits_{x \to {a^ + }} \left( {x - a} \right)\dfrac{{2017}}{{{{\left( {x - a} \right)}^2}}}\\L = \mathop {\lim }\limits_{x \to {a^ + }} \dfrac{{2017}}{{x - a}}\end{array}\)

Ta có \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {a^ + }} 2017 = 2017 > 0\\\mathop {\lim }\limits_{x \to {a^ + }} \left( {x - a} \right) = 0\\x \to {a^ + } \Rightarrow x - a > 0\end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to {a^ + }} \dfrac{{2017}}{{x - a}} =  + \infty \).

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com