Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giới hạn \(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^2} - 3x + 1} \right)\) bằng

Câu hỏi số 332668:
Thông hiểu

Giới hạn \(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^2} - 3x + 1} \right)\) bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:332668
Phương pháp giải

Đặt \({x^2}\) làm nhân tử chung và tính các giới hạn.

Giải chi tiết

Ta có: \(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^2} - 3x + 1} \right) = \mathop {\lim }\limits_{x \to  - \infty } \left[ {{x^2}\left( {1 - \dfrac{3}{x} + \dfrac{1}{{{x^2}}}} \right)} \right]\).

Vì \(\mathop {\lim }\limits_{x \to  - \infty } {x^2} =  + \infty \) và \(\mathop {\lim }\limits_{x \to  - \infty } \left( {1 - \dfrac{3}{x} + \dfrac{1}{{{x^2}}}} \right) = 1\) nên \(\mathop {\lim }\limits_{x \to  - \infty } \left[ {{x^2}\left( {1 - \dfrac{3}{x} + \dfrac{1}{{{x^2}}}} \right)} \right] =  + \infty \).

Vậy \(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^2} - 3x + 1} \right) =  + \infty \).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com