Cho dãy số \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} \ne 1\) và thỏa mãn \(\log _2^2\left(
Cho dãy số \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} \ne 1\) và thỏa mãn \(\log _2^2\left( {5{u_1}} \right) + \log _2^2\left( {7{u_1}} \right) = \log _2^25 + \log _2^27\). Biết \({u_{n + 1}} = 7{u_n}\) với mọi \(n \ge 1\). Giá trị nhỏ nhất của \(n\) để \({u_n} > 1111111\) bằng:
Đáp án đúng là: D
Quảng cáo
+) Sử dụng công thức \({\log _a}x + {\log _a}y = {\log _a}\left( {xy} \right)\,\,\left( {0 < a \ne 1;\,\,x,y > 0} \right)\).
+) Sử dụng công thức SHTQ của CSN có số hạng đầu \({u_1}\), công bội \(q\) là \({u_n} = {u_1}{q^{n - 1}}\).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












