Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Chọn đáp án đúng nhất:

Chọn đáp án đúng nhất:

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng
Giải hệ bất phương trình sau trên tập số thực : \(\left\{ \begin{array}{l}\left( {x - 3} \right)\left( {{x^2} - 4x + 4} \right)\left( {{x^2} + x - 2} \right) > 0\\\left| {x - 1} \right| < x + 1\end{array} \right.\)

Đáp án đúng là: A

Câu hỏi:336488
Phương pháp giải

Giải từng BPT và hợp nghiệm. \(\left| A \right| < B \Leftrightarrow \left\{ \begin{array}{l}B > 0\\{A^2} < {B^2}\end{array} \right..\)

Giải chi tiết

\(\begin{array}{l} + )\,\,\,\left( {x - 3} \right)\left( {{x^2} - 4x + 4} \right)\left( {{x^2} + x - 2} \right) > 0 \Leftrightarrow \left( {x - 3} \right)\left( {{x^2} + x - 2} \right){\left( {x - 2} \right)^2} > 0\\ \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\\left( {x - 3} \right)\left( {{x^2} + x - 2} \right) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\\left( {x - 3} \right)\left( {x - 1} \right)\left( {x + 2} \right) > 0\end{array} \right.\,\,\,\,\left( I \right)\end{array}\)

Đặt \(f\left( x \right) = \left( {x - 3} \right)\left( {{x^2} + x - 2} \right)\) . Ta có bảng:

\( \Rightarrow \left( I \right) \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\\left[ \begin{array}{l} - 2 < x < 1\\x > 3\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 2 < x < 1\\x > 3\end{array} \right.\,\,\,\,\,\,\,\left( 1 \right)\)    \( + )\,\,\,\left| {x - 1} \right| < x + 1 \Leftrightarrow \left\{ \begin{array}{l}x + 1 > 0\\{\left( {x - 1} \right)^2} < {\left( {x + 1} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x >  - 1\\{x^2} - 2x + 1 < {x^2} + 2x + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x >  - 1\\4x > 0\end{array} \right. \Leftrightarrow x > 0\,\,\,\left( 2 \right)\) 

Từ (1) và (2) hệ bất phương trình đã cho có nghiệm là : \(\left[ \begin{array}{l}0 < x < 1\\x > 3\end{array} \right..\)

Đáp án cần chọn là: A

Câu hỏi số 2:
Vận dụng
Giải bất phương trình sau trên tập số thực : \(\sqrt { - 3{x^2} + 7x - 2}  + x < 2\)

Đáp án đúng là: C

Câu hỏi:336489
Phương pháp giải

\(\sqrt {f\left( x \right)}  < g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) \ge 0\\g\left( x \right) > 0\\f\left( x \right) < {g^2}\left( x \right)\end{array} \right.\)

Giải chi tiết

\(\begin{array}{l}\sqrt { - 3{x^2} + 7x - 2}  + x < 2 \Leftrightarrow \sqrt { - 3{x^2} + 7x - 2}  < 2 - x\\ \Leftrightarrow \left\{ \begin{array}{l} - 3{x^2} + 7x - 2 \ge 0\\2 - x > 0\\ - 3{x^2} + 7x - 2 < 4 - 4x + {x^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{3} \le x \le 2\\x < 2\\4{x^2} - 11x + 6 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{3} \le x < 2\\\left[ \begin{array}{l}x > 2\\x < \frac{3}{4}\end{array} \right.\end{array} \right. \Leftrightarrow \frac{1}{3} \le x < \frac{3}{4}\end{array}\)

Vậy bất phương trình có tập nghiệm là : \(\frac{1}{3} \le x < \frac{3}{4}.\)

Đáp án cần chọn là: C

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com