Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

a) Chứng minh đẳng thức: \(\frac{{2{{\sin }^2}\left( {x + \frac{\pi }{4}} \right) - 1}}{{\cot x - \sin x.\cos

Câu hỏi số 336490:
Vận dụng

a) Chứng minh đẳng thức: \(\frac{{2{{\sin }^2}\left( {x + \frac{\pi }{4}} \right) - 1}}{{\cot x - \sin x.\cos x}} = 2{\tan ^2}x\) khi các biểu thức đều xác định.

b) Tìm các giá trị của tham số \(m\) để bất phương trình \( - 1 \le \frac{{{x^2} - 2x - m}}{{{x^2} + 2x + 2019}} < 2\) nghiệm đúng với mọi số thực \(x.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:336490
Phương pháp giải

a) Áp dụng các công thức lượng giác biến đổi vế trái bằng về phải.

b) Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) có biệt thức \(\Delta  = {b^2} - 4ac\)

-  Nếu \(\Delta  < 0\) thì với mọi \(x,f\left( x \right)\) có cùng dấu với hệ số a.

-  Nếu \(\Delta  = 0\)thì \(f\left( x \right)\) có nghiệm kép \(x =  - \frac{b}{{2a}}\), với mọi \(x \ne  - \frac{b}{{2a}},\,\,f\left( x \right)\) có cùng dấu với hệ số a.

- Nếu \(\Delta  > 0\),\(f\left( x \right)\)có 2 nghiệm \({x_1},{x_2}\,\,\left( {{x_1} < {x_2}} \right)\) và luôn cùng dấu với hệ số a với mọi x ngoài khoảng \(\left( {{x_1};\,\,{x_2}} \right)\) và luôn trái dấu với hệ số a với mọi x trong khoảng \(\left( {{x_1};\,\,{x_2}} \right).\)

Giải chi tiết

a) Chứng minh đẳng thức: \(\frac{{2{{\sin }^2}\left( {x + \frac{\pi }{4}} \right) - 1}}{{\cot x - \sin x.\cos x}} = 2{\tan ^2}x\) khi các biểu thức đều xác định.

Ta có:

\(\begin{array}{l}VT = \frac{{2{{\sin }^2}\left( {x + \frac{\pi }{4}} \right) - 1}}{{\cot x - \sin x.\cos x}} = \frac{{2{{\left( {\sin x\cos \frac{\pi }{4} + \cos x\sin \frac{\pi }{4}} \right)}^2} - 1}}{{\frac{{\cos x}}{{\sin x}} - \sin x.\cos x}}\\ = \frac{{2{{\left( {\frac{{\sqrt 2 }}{2}\sin x + \frac{{\sqrt 2 }}{2}\cos x} \right)}^2} - 1}}{{\frac{{\cos x}}{{\sin x}} - \sin x.\cos x}} = \frac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{{\frac{{\cos x}}{{\sin x}} - \sin x.\cos x}}\\ = \frac{{2\sin x\cos x}}{{\frac{{\cos x}}{{\sin x}} - \sin x.\cos x}} = \frac{{2\sin x}}{{\frac{1}{{\sin x}} - \sin x}} = \frac{{2{{\sin }^2}x}}{{1 - {{\sin }^2}x}} = \frac{{2{{\sin }^2}x}}{{{{\cos }^2}x}} = 2{\tan ^2}x = VP.\end{array}\)

 Vậy \(\frac{{2{{\sin }^2}\left( {x + \frac{\pi }{4}} \right) - 1}}{{\cot x - \sin x.\cos x}} = 2{\tan ^2}x.\)

b) Tìm các giá trị của tham số m để bất phương trình \( - 1 \le \frac{{{x^2} - 2x - m}}{{{x^2} + 2x + 2019}} < 2\) nghiệm đúng với mọi số thực x.

\(\begin{array}{l} - 1 \le \frac{{{x^2} - 2x - m}}{{{x^2} + 2x + 2019}} < 2 \Leftrightarrow \left\{ \begin{array}{l} - 1 \le \frac{{{x^2} - 2x - m}}{{{x^2} + 2x + 2019}}\\\frac{{{x^2} - 2x - m}}{{{x^2} + 2x + 2019}} < 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - {x^2} - 2x - 2019 \le {x^2} - 2x - m\\{x^2} - 2x - m < 2{x^2} + 4x + 4038\end{array} \right.\,\,\,\,\,\left( {do\,\,{x^2} + 2x + 2019 > 0\,\,\forall x \in \mathbb{R}} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}2{x^2} + 2019 - m \ge 0\,\,\,\,\,(1)\\{x^2} + 6x + m + 4038 > 0\,\,\,\,\,(2)\end{array} \right.\end{array}\)

Để bất phương trình nghiệm đúng với mọi số thực \(x\,\, \Leftrightarrow \) (1) và (2) nghiệm đúng với mọi số thực \(x\)

\( \Leftrightarrow \left\{ \begin{array}{l}{\Delta _1} \le 0\\{\Delta _2} < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2\left( {2019 - m} \right) \le 0\\9 - \left( {m + 4038} \right) < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2019 - m \ge 0\\ - 4029 - m < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 2019\\m >  - 4029\end{array} \right. \Leftrightarrow  - 4029 < m \le 2019.\)

Vậy với \( - 4029 < m \le 2019\) thỏa mãn yêu cầu đề bài.

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com