Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \dfrac{1}{{x\ln x}}\) thỏa

Câu hỏi số 337219:
Vận dụng

Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \dfrac{1}{{x\ln x}}\) thỏa mãn \(F\left( {\dfrac{1}{e}} \right) = 2,\,\,F\left( e \right) = \ln 2\). Giá trị của biểu thức \(F\left( {\dfrac{1}{{{e^2}}}} \right) + F\left( {{e^2}} \right)\) bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:337219
Phương pháp giải

\(F\left( x \right) = \int\limits_{}^{} {f\left( x \right)dx} \).

Giải chi tiết

\(\begin{array}{l}F\left( x \right) = \int\limits_{}^{} {f\left( x \right)dx}  = \int\limits_{}^{} {\dfrac{{dx}}{{x\ln x}}}  = \int\limits_{}^{} {\dfrac{{d\left( {\ln x} \right)}}{{\ln x}}}  = \ln \left| {\ln x} \right| + C\\F\left( x \right) = \left[ \begin{array}{l}\ln \left( {\ln x} \right) + {C_1}\,\,khi\,\,x \ge 1\\\ln \left( { - \ln x} \right) + {C_2}\,\,khi\,\,0 < x < 1\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}F\left( {\dfrac{1}{e}} \right) = 2\\F\left( e \right) = \ln 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{C_2} = 2\\{C_1} = \ln 2\end{array} \right.\\ \Rightarrow F\left( x \right) = \left[ \begin{array}{l}\ln \left( {\ln x} \right) + \ln 2\,\,khi\,\,x \ge 1\\\ln \left( { - \ln x} \right) + 2\,\,khi\,\,0 < x < 1\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}F\left( {\dfrac{1}{{{e^2}}}} \right) = \ln \left( { - \ln \dfrac{1}{{{e^2}}}} \right) + 2 = \ln 2 + 2\\F\left( {{e^2}} \right) = \ln \left( {\ln {e^2}} \right) + \ln 2 = 2\ln 2\end{array} \right.\\ \Rightarrow F\left( {\dfrac{1}{{{e^2}}}} \right) + F\left( {{e^2}} \right) = 3\ln 2 + 2\end{array}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com