Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường tròn \(\left( C \right):{\left( {x - 2}

Câu hỏi số 338542:
Vận dụng

Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 9\). Phương trình các tiếp tuyến của đường tròn đi qua điểm \(A\left( {5; - 1} \right)\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:338542
Phương pháp giải

Đường thẳng \(\Delta \) tiếp tuyến với đường tròn \(\left( C \right)\) tâm I bán kính R \( \Leftrightarrow d\left( {I;\Delta } \right) = R\)

Giải chi tiết

Gọi \(\overrightarrow n  = \left( {a;b} \right)\) là VTPT của tiếp tuyến \(\Delta \) cần tìm. Ta có: \(A\left( {5; - 1} \right) \in \Delta \)

\( \Rightarrow \Delta :a\left( {x - 5} \right) + b\left( {y + 1} \right) = 0 \Leftrightarrow ax + by - 5a + b = 0\)

Đường tròn \(\left( C \right)\) có tâm \(I\left( {2;2} \right)\) bán kính \(R = 3\)

\(\Delta \) tiếp tuyến với đường tròn \(\left( C \right)\)

\(\begin{array}{l} \Leftrightarrow d\left( {I;\Delta } \right) = R = 3 \Leftrightarrow \frac{{\left| {2a + 2b - 5a + b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = 3 \Leftrightarrow \left| { - 3a + 3b} \right| = 3\sqrt {{a^2} + {b^2}} \\ \Leftrightarrow {\left( { - a + b} \right)^2} = {a^2} + {b^2} \Leftrightarrow 2ab = 0 \Leftrightarrow \left[ \begin{array}{l}a = 0\\b = 0\end{array} \right.\end{array}\)

Với \(a = 0\) chọn \(b = 1 \Rightarrow \Delta :y =  - 1\)

Với \(b = 0\) chọn \(a = 1 \Rightarrow \Delta :x = 5\)

Chọn D.

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com