Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(A,B,C\) là ba góc của một tam giác. Khẳng định nào sau đây sai ?

Câu hỏi số 339144:
Vận dụng

Cho \(A,B,C\) là ba góc của một tam giác. Khẳng định nào sau đây sai ?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:339144
Phương pháp giải

Sử dụng linh hoạt các công thức biến đổi tổng thành tích và tích thành tổng.

Giải chi tiết

* Xét đáp án A:

\(\begin{array}{l}\sin A + \sin B + \sin C = 2\sin \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2} + \sin C\\ = 2\sin \dfrac{{\pi  - C}}{2}\cos \dfrac{{A - B}}{2} + \sin C = 2\sin \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right)\cos \dfrac{{A - B}}{2} + 2\sin \dfrac{C}{2}\cos \dfrac{C}{2}\\ = 2\cos \dfrac{C}{2}\cos \dfrac{{A - B}}{2} + 2\sin \dfrac{C}{2}\cos \dfrac{C}{2} = 2\cos \dfrac{C}{2}\left( {\cos \dfrac{{A - B}}{2} + \sin \dfrac{C}{2}} \right)\\ = 2\cos \dfrac{C}{2}\left( {\cos \dfrac{{A - B}}{2} + \cos \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right)} \right) = 2\cos \dfrac{C}{2}\left( {\cos \dfrac{{A - B}}{2} + \cos \dfrac{{A + B}}{2}} \right)\\ = 2\cos \dfrac{C}{2}.2\cos \dfrac{A}{2}\cos \dfrac{B}{2} = 4\cos \dfrac{A}{2}\cos \dfrac{B}{2}\cos \dfrac{C}{2}\end{array}\)

\( \Rightarrow \) Đáp án A đúng.

* Xét đáp án B:

\(\begin{array}{l}\cos A + \cos B + \cos C = 1 + 4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}\\ \Leftrightarrow \cos A + \cos B + \cos C - 1 = 4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}\\ \Leftrightarrow 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2} - 2{\sin ^2}\dfrac{C}{2} = 4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}\\ \Leftrightarrow 2\cos \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right)\cos \dfrac{{A - B}}{2} - 2{\sin ^2}\dfrac{C}{2} = 4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}\\ \Leftrightarrow 2\sin \dfrac{C}{2}\cos \dfrac{{A - B}}{2} - 2{\sin ^2}\dfrac{C}{2} = 4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}\\ \Leftrightarrow 2\sin \dfrac{C}{2}\left( {\cos \dfrac{{A - B}}{2} - \sin \dfrac{C}{2}} \right) = 4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}\\ \Leftrightarrow \cos \dfrac{{A - B}}{2} - \cos \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right) = 2\sin \dfrac{A}{2}\sin \dfrac{B}{2}\\ \Leftrightarrow \cos \dfrac{{A - B}}{2} - \cos \dfrac{{A + B}}{2} = 2\sin \dfrac{A}{2}\sin \dfrac{B}{2}\\ \Leftrightarrow  - 2\sin \dfrac{{A - B + A + B}}{4}\sin \dfrac{{A - B - A - B}}{4} = 2\sin \dfrac{A}{2}\sin \dfrac{B}{2}\\ \Leftrightarrow  - \sin \dfrac{A}{2}\sin \dfrac{{ - B}}{2} = \sin \dfrac{A}{2}\sin \dfrac{B}{2}\,\,\left( {luon\,\,dung} \right)\end{array}\)

\( \Rightarrow \) Đáp án B đúng.

* Xét đáp án C:

\(\begin{array}{l}\,\,\,\,\sin 2A + \sin 2B + \sin 2C = 2\sin \left( {A + B} \right)\cos \left( {A - B} \right) + \sin 2C\\ = 2\sin \left( {\pi  - C} \right)\cos \left( {A - B} \right) + \sin 2C = 2\sin C\cos \left( {A - B} \right) + 2\sin C\cos C\\ = 2\sin C\left( {\cos \left( {A - B} \right) + \cos C} \right) = 2\sin C.2\cos \dfrac{{C + A - B}}{2}\cos \dfrac{{C - A + B}}{2}\\ = 4\sin Ccos\dfrac{{\pi  - 2B}}{2}\cos \dfrac{{\pi  - 2A}}{2} = 4\sin C\cos \left( {\dfrac{\pi }{2} - B} \right)\cos \left( {\dfrac{\pi }{2} - A} \right)\\ = 4\sin C\sin B\sin A = 4\sin A\sin B\sin C\end{array}\)

\( \Rightarrow \) Đáp án C đúng.

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com