Cho parabol \(\left( P \right):\,\,y = \frac{1}{2}{x^2}\) và đường thẳng \(\left( d \right):\,\,y = x + m -
Cho parabol \(\left( P \right):\,\,y = \frac{1}{2}{x^2}\) và đường thẳng \(\left( d \right):\,\,y = x + m - 1\) (m là tham số)
1) Vẽ đồ thị hàm số \(\left( P \right):\,\,y = \frac{1}{2}{x^2}\)
2) Gọi \(A\left( {{x_A};\,\,{y_A}} \right),\,\,B\left( {{x_B};\,\,{y_B}} \right)\) là hai giao điểm phân biệt của \(\left( d \right)\) và \(\left( P \right).\) Tìm tất cả các giá trị của tham số \(m\) để \({x_A} > 0,\,\,\,{x_B} > 0.\)
Đáp án đúng là: A
Quảng cáo
1) Lập bảng giá trị, xác định các điểm đồ thị hàm số \(\left( P \right):\,\,y = \frac{1}{2}{x^2}\) đi qua và vẽ đồ thị hàm số.
2) Xét phương trình hoành độ giao điểm của hai đồ thị hàm số \(\left( d \right)\) và \(\left( P \right)\), yêu cầu bài toán tương đương với tìm m để phương trình hoành độ giao điểm có hai nghiệm dương phân biệt.
Sau khi làm xong phải kết hợp lại các điều kiện của \(m\) trước khi đưa ra kết luận cuối cùng.
Đáp án cần chọn là: A
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










