Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(\Delta ABC\) vuông tại \(A\) có đường cao \(AH\)và đường trung tuyến \(AM\). Biết \(AH =

Câu hỏi số 344426:
Vận dụng

Cho \(\Delta ABC\) vuông tại \(A\) có đường cao \(AH\)và đường trung tuyến \(AM\). Biết \(AH = 3cm;\,HB = 4cm.\)  Hãy tính \(AB,AC,AM\) và diện tích tam giác \(ABC.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:344426
Giải chi tiết

+) Áp dụng định lý Pytago trong tam giác vuông ABH vuông tại H ta có:

\(\,\,\,\,\,\,\,A{B^2} = A{H^2} + H{B^2} = {3^2} + {4^2} = 25 \Rightarrow AB = 5\,\,\,\left( {cm} \right)\).

+) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ABC với AH là đường cao ta có:

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} \Leftrightarrow \frac{1}{{A{C^2}}} = \frac{1}{{A{H^2}}} - \frac{1}{{A{B^2}}} \Leftrightarrow \frac{1}{{A{C^2}}} = \frac{1}{{{3^2}}} - \frac{1}{{{5^2}}} = \frac{{16}}{{225}} \Rightarrow AC = \frac{{15}}{4}\left( {cm} \right)\)

+) Áp dụng định lý Pytago trong tam giác vuông ABC vuông tại A ta có:

\(B{C^2} = A{B^2} + A{C^2} = {5^2} + {\left( {\frac{{15}}{4}} \right)^2} = \frac{{625}}{{16}} \Rightarrow BC = \frac{{25}}{4}\left( {cm} \right)\).

+) Tam giác ABC vuông tại A có trung tuyến AM nên ta có: \(AM = \frac{1}{2}BC = \frac{{25}}{8}\,\,\,\left( {cm} \right)\)

+) Diện tích tam giác ABC với AH là đường cao ta có: \({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}.3.\frac{{25}}{4} = \frac{{75}}{8}\,\,\left( {c{m^2}} \right)\).

Vậy \(AB = 5cm,\,\,AC = \frac{{15}}{4}cm,\,\,AM = \frac{{25}}{8}cm,\,\,{S_{\Delta ABC}} = \frac{{75}}{8}\,\,c{m^2}\)

Đáp án cần chọn là: A

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com