Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh bằng \(a\). Biết tam giác \(SBA\) vuông

Câu hỏi số 344442:
Vận dụng cao

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh bằng \(a\). Biết tam giác \(SBA\) vuông tại \(B\), tam giác \(SCA\) vuông tại \(C\) và khoảng cách giữa hai đường thẳng \(AC\) và \(SB\) bằng \(\dfrac{{3a}}{{\sqrt {13} }}\). Tính thể tích khối chóp \(S.ABC\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:344442
Phương pháp giải

Gắn hệ trục tọa độ.

Đường thẳng \({d_1}\) có 1 VTCP \(\overrightarrow {{u_1}} \), đi qua điểm \({M_1}\).

Đường thẳng \({d_2}\) có 1 VTCP \(\overrightarrow {{u_2}} \), đi qua điểm \({M_2}\).

Khoảng cách giữa \({d_1}\) và \({d_2}\) được tính theo công thức: 

\(d({d_1};{d_2}) = \dfrac{{\left| {\overrightarrow {{M_1}{M_2}} .\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right]} \right|}}{{\left| {\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right]} \right|}}\)

Giải chi tiết

Gọi O là trung điểm của BC.

Ta gắn hệ trục tọa độ Oxyz như hình vẽ. Trong đó:

\(A\left( {\dfrac{{a\sqrt 3 }}{2};0;0} \right),\,B\left( {0;\dfrac{a}{2};0} \right),\,C\left( {0; - \dfrac{a}{2};0} \right)\)

Gọi \(\left( P \right)\) là mặt phẳng vuông góc với AB tại B, \(\left( Q \right)\) là mặt phẳng vuông góc với AC tại C. Gọi giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\) là đường thẳng \(d\).

Do \(SB \bot AB,\,\,SC \bot AC\) nên \(S \in d\).

\(\overrightarrow {AB}  = \left( { - \dfrac{{a\sqrt 3 }}{2};\dfrac{a}{2};0} \right),\,\,\overrightarrow {AC}  = \left( { - \dfrac{{a\sqrt 3 }}{2}; - \dfrac{a}{2};0} \right)\)

Mặt phẳng \(\left( P \right)\) đi qua \(B\left( {0;\dfrac{a}{2};0} \right)\), nhận \(\overrightarrow {{n_1}}  = \left( {\sqrt 3 ; - 1;0} \right)\) là 1 VTPT, có phương trình là: \(\sqrt 3 x - y + \dfrac{a}{2} = 0\).

Mặt phẳng \(\left( Q \right)\) đi qua \(C\left( {0; - \dfrac{a}{2};0} \right)\), nhận \(\overrightarrow {{n_2}}  = \left( {\sqrt 3 ;1;0} \right)\) là 1 VTPT, có phương trình là: \(\sqrt 3 x + y + \dfrac{a}{2} = 0\).

\(d\) là giao của \(\left( P \right)\) và \(\left( Q \right) \Rightarrow d:\left\{ \begin{array}{l}\sqrt 3 x - y + \dfrac{a}{2} = 0\\\sqrt 3 x + y + \dfrac{a}{2} = 0\end{array} \right.\),   \(\left[ {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right] = \left( {0;0;2\sqrt 3 } \right)\)

\( \Rightarrow d\) đi qua \(I\left( { - \dfrac{a}{{2\sqrt 3 }};0;0} \right)\)có 1 VTCP \(\overrightarrow u  = \left( {0;0;1} \right)\), có phương trình tham số là: \(\left\{ \begin{array}{l}x =  - \dfrac{a}{{2\sqrt 3 }}\\y = 0\\z = t\end{array} \right.\)

Giả sử \(S\left( { - \dfrac{a}{{2\sqrt 3 }};0;t} \right)\). Ta có: \(\begin{array}{l}\overrightarrow {SB}  = \left( {\dfrac{a}{{2\sqrt 3 }};\dfrac{a}{2}; - t} \right);\,\,\\\overrightarrow {CA}  = \left( {\dfrac{{a\sqrt 3 }}{2};\dfrac{a}{2};0} \right)\end{array}\)\( \Rightarrow \left[ {\overrightarrow {SB} ;\overrightarrow {CA} } \right] = \left( {\dfrac{{at}}{2};\dfrac{{a\sqrt 3 t}}{2}; - \dfrac{{{a^2}\sqrt 3 }}{6}} \right)\)\( \Rightarrow \left| {\left[ {\overrightarrow {SB} ;\overrightarrow {CA} } \right]} \right| = \sqrt {\dfrac{{{a^2}{t^2}}}{4} + \dfrac{{3{a^2}{t^2}}}{4} + \dfrac{{{a^2}}}{{12}}}  = \sqrt {{a^2}{t^2} + \dfrac{{{a^2}}}{{12}}} \)

Ta có: \(\overrightarrow {CB}  = \left( {0;a;0} \right)\)\( \Rightarrow \left[ {\overrightarrow {SB} ;\overrightarrow {CA} } \right].\overrightarrow {CB}  = 0 + \dfrac{{a\sqrt 3 t}}{2}.a + 0 = \dfrac{{{a^2}\sqrt 3 t}}{2}\)

\(d(SB;AC) = \dfrac{{\left| {\left[ {\overrightarrow {SB} ;\overrightarrow {CA} } \right].\overrightarrow {CB} } \right|}}{{\left| {\left[ {\overrightarrow {SB} ;\overrightarrow {CA} } \right]} \right|}} = \dfrac{{\left| {\dfrac{{{a^2}\sqrt 3 t}}{2}} \right|}}{{\sqrt {{a^2}{t^2} + \dfrac{{{a^2}}}{{12}}} }}\)

\(\begin{array}{l} \Rightarrow \dfrac{{\left| {\dfrac{{{a^2}\sqrt 3 t}}{2}} \right|}}{{\sqrt {{a^2}{t^2} + \dfrac{{{a^2}}}{{12}}} }} = \dfrac{{3a}}{{\sqrt {13} }} \Leftrightarrow \dfrac{{3{a^4}{t^2}}}{{4{a^2}{t^2} + \dfrac{1}{3}{a^2}}} = \dfrac{{9{a^2}}}{{13}}\\ \Leftrightarrow 39{a^2}{t^2} = 36{a^2}{t^2} + 3{a^2} \Leftrightarrow {t^2} = {a^2} \Leftrightarrow t = a\end{array}\)

\( \Rightarrow S\left( { - \dfrac{a}{{2\sqrt 3 }};0;a} \right)\)\( \Rightarrow h = d\left( {S;\left( {Oxy} \right)} \right) = a\)

Diện tích tam giác đều ABC là: \(S = \dfrac{{{a^2}\sqrt 3 }}{4}\)\( \Rightarrow {V_{S.ABC}} = \dfrac{1}{3}.h.S = \dfrac{1}{3}.a.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{{12}}\).

Chọn: B

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com