Chọn đáp án đúng nhất:
Chọn đáp án đúng nhất:
Trả lời cho các câu 1, 2 dưới đây:
Cho đường thẳng \(\left( d \right):y = x - 1\) và parabol \(\left( P \right):y = 3{x^2}\)
a) Tìm tọa độ điểm \(A\) thuộc parabol \(\left( P \right)\) , biết điểm \(A\) có hoành độ \(x = - 1.\)
b) Tìm \(b\) để đường thẳng \(\left( d \right)\) và đường thẳng \(\left( {d'} \right):y = \frac{1}{2}x + b\) cắt nhau tại một điểm trên trục hoành.
Đáp án đúng là: C
a) Thay hoành độ điểm \(x = - 1\) vào công thức hàm số của \(\left( P \right)\) để tìm tung độ điểm \(A.\)
b) Gọi \(B\left( {{x_B};\,\,0} \right)\) là điểm thuộc trục hoành và là giao điểm của hai đường thẳng \(d,\,\,d'.\) Thay tọa độ điểm \(B\) vào phương trình đường thẳng \(d\) để tìm \({x_B}.\) Thay tọa độ điểm \(B\) vừa tìm được vào phương trình đường thẳng \(d'\) để tìm \(b.\)
Đáp án cần chọn là: C
a) Giải hệ phương trình \(\left\{ \begin{array}{l}x + y = 5\\2x - y = 1\end{array} \right..\)
b) Tìm tham số \(a\) để hệ phương trình \(\left\{ \begin{array}{l}x - y = a\\7x - 2y = 5a - 1\end{array} \right.\) có nghiệm duy nhất \(\left( {x;y} \right)\) thỏa mãn \(y = 2x.\)
Đáp án đúng là: B
a) Giải hệ phương trình bằng phương pháp thế.
b) Hệ phương trình \(\left\{ \begin{array}{l}{a_1}x + {b_1}y = {c_1}\\{a_2}x + {b_2}y = {c_2}\end{array} \right.\) (với \({a_2}{b_2} \ne 0\)) có nghiệm duy nhất \( \Leftrightarrow \frac{{{a_1}}}{{{a_2}}} \ne \frac{{{b_1}}}{{{b_2}}}.\) Tìm nghiệm duy nhất đó theo \(a\) rồi thế vào biểu thức bài cho để tìm \(a.\)
Đáp án cần chọn là: B
Quảng cáo
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










