Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Chọn đáp án đúng nhất:

Chọn đáp án đúng nhất:

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng

Giải phương trình \({x^4} - 7{x^2} - 18 = 0.\)

Đáp án đúng là: C

Câu hỏi:344816
Phương pháp giải

Giải phương trình đã cho bằng cách đặt ẩn phụ \({x^2} = t\,\,\left( {t \ge 0} \right).\)

+) Giải phương trình tìm ẩn \(t,\) đối chiếu với điều kiện rồi tìm \(x.\)

Giải chi tiết

Giải phương trình \({x^4} - 7{x^2} - 18 = 0\)

Đặt \({x^2} = t\,\left( {t \ge 0} \right)\) ta có phương trình \({t^2} - 7t - 18 = 0\)

\(\begin{array}{l} \Leftrightarrow {t^2} - 9t + 2t - 18 = 0\\ \Leftrightarrow t\left( {t - 9} \right) + 2\left( {t - 9} \right) = 0\\ \Leftrightarrow \left( {t + 2} \right)\left( {t - 9} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t + 2 = 0\\t - 9 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t =  - 2\left( {ktm} \right)\\t = 9\left( {tm} \right)\end{array} \right.\end{array}\)

Với \(t = 9\) thì \({x^2} = 9 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x =  - 3\end{array} \right.\)

Vậy tập nghiệm của phương trình đã cho là: \(S = \left\{ { - 3;3} \right\}\)

Đáp án cần chọn là: C

Câu hỏi số 2:
Vận dụng

Trong mặt phẳng tọa độ \(Oxy,\) cho đường thẳng \(\left( d \right):\,\,y = 2mx - {m^2} + 1\) và parabol \(\left( P \right):\,\,y = {x^2}.\)

a) Chứng minh \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt.

b) Tìm tất cả các giá trị của \(m\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},\,\,{x_2}\) thỏa mãn \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{ - 2}}{{{x_1}{x_2}}} + 1.\)

Đáp án đúng là: B

Câu hỏi:344817
Phương pháp giải

Xét phương trình hoành độ giao điểm.

a) Hai đồ thị hàm số cắt nhau tại hai điểm phân biệt \( \Leftrightarrow \) phương trình hoành độ giao điểm có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0.\)

b) Sử dụng định lý Vi-et.

Giải chi tiết

Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = 2mx - {m^2} + 1\)

Xét phương trình hoành độ giao điểm của đường thẳng \(\left( d \right)\) và parabol \(\left( P \right)\) ta có

\({x^2} = 2mx - {m^2} + 1 \Leftrightarrow {x^2} - 2mx + {m^2} - 1 = 0\,\,\left( * \right)\)

Số giao điểm của (d) và (P) cũng chính là số nghiệm của phương trình (*)

Phương trình \(\left( * \right)\) có \(\Delta ' = {m^2} - \left( {{m^2} - 1} \right) = 1 > 0\)

a) Vì \(\Delta ' > 0\) nên phương trình \(\left( * \right)\) luôn có hai nghiệm phân biệt với mọi \(m\) hay đường thẳng \(\left( d \right)\) luôn cắt parabol \(\left( P \right)\) tại hai điểm phân biệt.

b) Theo câu a) ta có đường thẳng \(\left( d \right)\) luôn cắt parabol \(\left( P \right)\) tại hai điểm phân biệt.

Gọi \({x_1};{x_2}\) là hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) thì \({x_1};{x_2}\) là hai nghiệm của phương trình \(\left( * \right)\)

Theo hệ thức Vi-et ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = {m^2} - 1\end{array} \right.\)

Xét \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{ - 2}}{{{x_1}{x_2}}} + 1\)    

ĐK: \({x_1}{x_2} \ne 0 \Leftrightarrow {m^2} - 1 \ne 0 \Leftrightarrow m \ne  \pm 1\)

\( \Leftrightarrow \frac{{{x_1} + {x_2}}}{{{x_1}{x_2}}} = \frac{{ - 2}}{{{x_1}{x_2}}} + \frac{{{x_1}{x_2}}}{{{x_1}{x_2}}}\)

\(\begin{array}{l} \Rightarrow {x_1} + {x_2} =  - 2 + {x_1}{x_2}\\ \Leftrightarrow 2m =  - 2 + {m^2} - 1\\ \Leftrightarrow {m^2} - 2m - 3 = 0\\ \Leftrightarrow {m^2} - 3m + m - 3 = 0\\ \Leftrightarrow m\left( {m - 3} \right) + \left( {m - 3} \right) = 0\\ \Leftrightarrow \left( {m + 1} \right)\left( {m - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m + 1 = 0\\m - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m =  - 1\,\,\,\,\,\left( {ktm} \right)\\m = 3\,\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

Vậy \(m = 3\) là giá trị thỏa mãn điều kiện đề bài.

Đáp án cần chọn là: B

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com