Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Vườn hoa của một trường học có hình dạng được giới hạn bởi một đường elip có bốn

Câu hỏi số 345675:
Vận dụng

Vườn hoa của một trường học có hình dạng được giới hạn bởi một đường elip có bốn đỉnh \(A,B,C,D\) và hai đường parabol có các đỉnh lần lượt là \(E,F\) (phần tô đậm của hình vẽ bên). Hai đường parabol có cùng trục đối xứng \(AB\), đối xứng với nhau qua trục \(CD\), hai parabol cắt elip tại các điểm \(M,N,P,Q\). Biết \(AB = 8m,CD = 6m,MN = PQ = 3\sqrt 3 m,EF = 2m\). Chi phí để trồng hoa trên vườn là \(300.000\) đ/m2 . Hỏi số tiền trồng hoa cho cả vườn gần nhất với số tiền nào dưới đây?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:345675
Phương pháp giải

- Viết phương trình elip và parabol.

- Tính diện tích hình phẳng (phần màu trắng) giới hạn bởi nửa elip bên phải trục \(CD\) và parabol bên phải trục \(CD\).

Giải chi tiết

Gắn hệ trục tọa độ như hình vẽ, dễ thấy \(B\left( {4;0} \right),C\left( {0;3} \right),F\left( {1;0} \right)\).

Ta chỉ cần xét phần bên phải trục \(Oy\) vì hình vẽ có tính đối xứng.

Phương trình elip: \(\left( E \right):\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{9} = 1 \Rightarrow x = 4\sqrt {1 - \dfrac{{{y^2}}}{9}} \).

Dễ thấy \(PQ = 3\sqrt 3  \Rightarrow P\left( {m;\dfrac{{3\sqrt 3 }}{2}} \right)\) với \(m > 0\).

Mà \(P \in \left( E \right) \Rightarrow m = 4\sqrt {1 - \dfrac{{27/4}}{9}}  = 2 \Rightarrow P\left( {2;\dfrac{{3\sqrt 3 }}{2}} \right)\).

Gọi phương trình parabol bên phải trục tung là \(\left( P \right):x = a{y^2} + by + c\).

Đỉnh \(F\left( {1;0} \right) \Rightarrow c = 1,b = 0 \Rightarrow x = a{y^2} + 1\)

\(P \in \left( P \right):x = a{y^2} + 1 \Leftrightarrow 2 = a.{\left( {\dfrac{{3\sqrt 3 }}{2}} \right)^2} + 1 \Leftrightarrow \dfrac{{27}}{4}a + 1 = 2 \Leftrightarrow a = \dfrac{4}{{27}}\) \( \Rightarrow \left( P \right):x = \dfrac{4}{{27}}{y^2} + 1\).

Diện tích hình phẳng giới hạn bởi elip \(\left( E \right)\) và parabol \(\left( P \right)\) (phần màu trắng) nên phải trục tung là:

\({S_1} = \int\limits_{ - \dfrac{{3\sqrt 3 }}{2}}^{\dfrac{{3\sqrt 3 }}{2}} {\left[ {4\sqrt {1 - \dfrac{{{y^2}}}{9}}  - \dfrac{4}{{27}}{y^2} - 1} \right]dy} \)\( \Rightarrow 2{S_1} \approx 21,6686\)

Diện tích elip: \(S = \pi ab = \pi .4.3 = 12\pi \).

Diện tích phần tô màu đậm là \(S - 2{S_1} \approx 16,03\).

Số tiền trồng hoa là: \(16,03.300.000 = 4.809.000\)

 

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com