`

Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình vuông \(ABCD\) có tâm là \(O\) và cạnh \(a\). \(M\) là một điểm bất kỳ. Tính độ dài vectơ \(\overrightarrow u  = \overrightarrow {MA}  + \overrightarrow {MB}  - \overrightarrow {MC}  - \overrightarrow {MD} \).

Câu 347940: Cho hình vuông \(ABCD\) có tâm là \(O\) và cạnh \(a\). \(M\) là một điểm bất kỳ. Tính độ dài vectơ \(\overrightarrow u  = \overrightarrow {MA}  + \overrightarrow {MB}  - \overrightarrow {MC}  - \overrightarrow {MD} \).

A. \(2a\)

B. \(3a\)

C. \(a\)

D. \(4a\)

Câu hỏi : 347940

Phương pháp giải:

Chứng minh \(\overrightarrow u \) không phụ thuộc vị trí điểm \(M\)và tính theo quy tắc hình bình hành.

  • Đáp án : A
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Theo quy tắc phép trừ ta có: \(\overrightarrow u  = \left( {\overrightarrow {MA}  - \overrightarrow {MC} } \right) + \left( {\overrightarrow {MB}  - \overrightarrow {MD} } \right) = \overrightarrow {CA}  + \overrightarrow {DB} \)

    Suy ra \(\overrightarrow u \) không phụ thuộc vị trí điểm \(M\).

    Qua \(A\) kẻ đường thẳng song song với \(DB\) cắt \(BC\) tại \(C'\).

    Khi đó tứ giác \(ADBC'\) là hình bình hành (vì có cặp cạnh đối song song) suy ra \(\overrightarrow {DB}  = \overrightarrow {AC'} \)

    Do đó \(\overrightarrow u  = \overrightarrow {CA}  + \overrightarrow {AC'}  = \overrightarrow {CC'} \)

    Vì vậy \(\left| {\overrightarrow u } \right| = \left| {\overrightarrow {CC'} } \right| = BC + BC' = a + a = 2a\)

     Chọn  A.

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com