Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho lăng trụ \(ABCD.A'B'C'D'\) có hai đáy là các hình bình hành. Các điểm \(M,N,P\) lần lượt là

Câu hỏi số 349852:
Vận dụng

Cho lăng trụ \(ABCD.A'B'C'D'\) có hai đáy là các hình bình hành. Các điểm \(M,N,P\) lần lượt là trung điểm của cạnh \(AD,BC,CC'\) (tham khảo hình vẽ). Xét các khẳng định sau:

I) Mặt phẳng \(\left( {MNP} \right)\) cắt cạnh \(A'D'\)

II) Mặt phẳng \(\left( {MNP} \right)\) cắt cạnh \(DD'\) tại trung điểm của \(DD'\)

III) Mặt phẳng \(\left( {MNP} \right)\) song song với mặt phẳng \(\left( {ABC'D'} \right)\)

Trong các khẳng định trên, số khẳng định đúng là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:349852
Phương pháp giải

Sử dụng cách tìm giao điểm của đường thẳng và mặt phẳng

Chứng minh hai mặt phẳng \(\left( P \right),\left( Q \right)\)  song song dựa vào \(\left\{ \begin{array}{l}a//b\\c//d\\a,c \subset \left( P \right),a \cap c\\b,d \subset \left( Q \right),b \cap d\end{array} \right. \Rightarrow \left( P \right)//\left( Q \right)\)

Giải chi tiết

+ Lấy \(E\) là trung điểm \(DD' \Rightarrow EP//CD//MN\) suy ra \(\left( {MNP} \right) \equiv \left( {MNPE} \right)\)

Do đó \(\left( {MNP} \right) \cap DD' = E\) với \(E\) là trung điểm \(DD'\) nên II) đúng.

+ Trong \(\left( {ADD'A'} \right)\) có \(ME\) cắt tia \(A'D'\) tại \(F\) suy ra \(\left( {MNPE} \right) \cap A'D' = \left\{ F \right\}\)

Ta có \(AMFD'\) là hình bình hành (do \(MF//AD';AM//D'F\) ) nên \(AM = D'F = \dfrac{1}{2}A'D' \Rightarrow A'F = \dfrac{3}{2}A'D\)

Nên \(F\) không thuộc cạnh \(A'D'\) do đó I) sai.

+ Ta có \(ME//AD'\)(do \(ME\) là đường trung bình \(\Delta DAD'\)) và \(MN//AB\) nên \(\left( {MNP} \right)//\left( {ABC'D'} \right)\) do đó III) đúng.

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com