Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Chọn đáp án đúng nhất:

Chọn đáp án đúng nhất:

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng
Theo kế hoạch, một xưởng may phải may xong \(360\) bộ quần áo trong một thời gian quy định. Đến khi thực hiện, mỗi ngày xưởng đã may được nhiều hơn \(4\) bộ quần áo so với số bộ quần áo phải may trong một ngày theo kế hoạch. Vì thế xưởng đã hoàn thành kế hoạch trước \(1\) ngày. Hỏi theo kế hoạch, mỗi ngày xưởng phải may bao nhiêu bộ quần áo?

Đáp án đúng là: C

Câu hỏi:350442
Phương pháp giải

Giải bài toán bằng cách lập phương trình:

Gọi số bộ quần áo mỗi ngày xưởng phải may theo kế hoạch là \(x\) (bộ) \(\left( {x \in {N^*},\,x < 360} \right).\)

Biểu diễn các đại lượng chưa biết theo các đại lượng đã biết và ẩn vừa gọi.

Dựa vào các giả thiết để lập phương trình. Giải phương trình tìm ẩn.

Đối chiếu với điều kiện của ẩn rồi kết luận.

Giải chi tiết

Gọi số bộ quần áo mỗi ngày xưởng phải may theo kế hoạch là \(x\) (bộ) \(\left( {x \in {N^*},\,x < 360} \right).\)

Thời gian may xong \(360\) bộ quần áo theo kế hoạch là: \(\frac{{360}}{x}\) (ngày).

Đến khi thực hiện, mỗi ngày xưởng đã may được nhiều hơn \(4\) bộ quần áo so với số bộ quần áo phải may trong một ngày theo kế hoạch nên mỗi ngày thực tế may được \(x + 4\) (bộ).

Thời gian may xong \(360\) bộ quần áo theo thực tế là: \(\frac{{360}}{{x + 4}}\) (ngày).

Vì xưởng đã hoàn thành kế hoạch trước \(1\) ngày nên ta có phương trình:

\(\begin{array}{l}\,\,\,\,\,\,\frac{{360}}{x} - \frac{{360}}{{x + 4}} = 1 \Leftrightarrow \frac{1}{x} - \frac{1}{{x + 4}} = \frac{1}{{360}}\\ \Leftrightarrow \frac{4}{{x\left( {x + 4} \right)}} = \frac{1}{{360}} \Leftrightarrow x\left( {x + 4} \right) = 1440\\ \Leftrightarrow {x^2} + 4x - 1440 = 0 \Leftrightarrow {x^2} - 36x + 40x - 1440 = 0\\ \Leftrightarrow x\left( {x - 36} \right) + 40\left( {x - 36} \right) = 0 \Leftrightarrow \left( {x - 36} \right)\left( {x + 40} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}x = 36\,\,\,\,\,\,\left( {tm} \right)\\x =  - 40\,\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)

Vậy theo kế hoạch, mỗi ngày xưởng phải may \(36\) bộ quần áo.

Đáp án cần chọn là: C

Câu hỏi số 2:
Vận dụng
Cho phương trình: \({x^2} - \left( {2m + 1} \right) - 3 = 0\) (\(m\) là tham số). Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt \({x_1},\,{x_2}\) với mọi \(m.\) Tìm các giá trị của \(m\) sao cho \(\left| {{x_1}} \right| - \left| {{x_2}} \right| = 5\) và \({x_1} < {x_2}\).

Đáp án đúng là: B

Câu hỏi:350443
Phương pháp giải

Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0.\)

Áp dụng hệ thức Vi-ét và biểu thức bài cho để tìm \(m.\) Đối chiếu với điều kiện rồi kết luận.

Giải chi tiết

Ta có \(\Delta  = {\left( {2m + 1} \right)^2} - 4.1.\left( { - 3} \right) = {\left( {2m + 1} \right)^2} + 12\).

Ta có \({\left( {2m + 1} \right)^2} \ge 0\,\,\forall m \Leftrightarrow {\left( {2m + 1} \right)^2} + 12 \ge 1 > 0\,\,\forall m \Rightarrow \) Phương trình đã cho luôn có 2 nghiệm phân biệt \({x_1};\,\,{x_2}\,\,\left( {{x_1} < {x_2}} \right)\)  với mọi giá trị của \(m.\)

Khi đó áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m + 1\\{x_1}{x_2} =  - 3\end{array} \right.\).

Do \({x_1}{x_2} =  - 3 < 0 \Rightarrow {x_1},\,\,{x_2}\) trái dấu. Mà \({x_1} < {x_2}\,\,\left( {gt} \right) \Rightarrow {x_1} < 0 < {x_2} \Rightarrow \left\{ \begin{array}{l}\left| {{x_1}} \right| =  - {x_1}\\\left| {{x_2}} \right| = {x_2}\end{array} \right.\).

Theo bài ra ta có: \(\left| {{x_1}} \right| - \left| {{x_2}} \right| = 5 \Leftrightarrow  - {x_1} - {x_2} = 5 \Leftrightarrow {x_1} + {x_2} =  - 5\).

Mà \({x_1} + {x_2} = 2m + 1 \Rightarrow  - 5 = 2m + 1 \Leftrightarrow 2m =  - 6 \Leftrightarrow m =  - 3.\)

Vậy \(m =  - 3\) thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: B

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com