Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong mặt phẳng \(Oxy\) cho \(\Delta ABC\) có \(A\left( { - 2;\,\,3} \right),\) đường cao \(CH:\,\,2x + y - 7

Câu hỏi số 350974:
Vận dụng

Trong mặt phẳng \(Oxy\) cho \(\Delta ABC\) có \(A\left( { - 2;\,\,3} \right),\) đường cao \(CH:\,\,2x + y - 7 = 0\) và trung tuyến \(BM:\,\,2x - y + 1 = 0.\) Tọa độ trọng tâm \(G\) của \(\Delta ABC\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:350974
Phương pháp giải

+) Lập phương trình đường thẳng \(AB\) đi qua \(A\) và vuông góc với \(CH.\)

+) Tìm tọa độ điểm \(B = BM \cap AB.\)

Giải chi tiết

Đường thẳng \(AB \bot CH \Rightarrow AB\) có VTPT là: \(\overrightarrow {{n_{AB}}}  = \left( {1; - 2} \right).\)

Phương trình đường thẳng  \(AB\) đi qua \(A\) và vuông góc với \(CH\) là: \(x + 2 - 2\left( {y - 3} \right) = 0 \Leftrightarrow x - 2y + 8 = 0.\)

Khi đó tọa độ điểm \(B\) là nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}2x - y + 1 = 0\\x - 2y + 8 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 5\end{array} \right. \Rightarrow B\left( {2;\,\,5} \right).\)

Gọi \(C\left( {c;\,\,7 - 2c} \right).\)

Khi đó ta có tọa độ trọng tâm \(G\) của \(\Delta ABC\) là: \(\left\{ \begin{array}{l}{x_G} = \frac{{ - 2 + 2 + c}}{3} = \frac{c}{3}\\{y_G} = \frac{{3 + 5 + 7 - 2c}}{3} = \frac{{15 - 2c}}{3}\end{array} \right. \Rightarrow G\left( {\frac{c}{3};\,\,\frac{{15 - 2c}}{3}} \right).\)

Lại có \(G \in BM \Rightarrow 2.\frac{c}{3} - \frac{{15 - 2c}}{3} + 1 = 0 \Leftrightarrow 2c - 15 + 2c + 3 = 0 \Leftrightarrow c = 3\)

\( \Rightarrow C\left( {3;\,\,1} \right) \Rightarrow G\left( {1;\,\,3} \right).\)

Chọn  D.

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com