`

Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Biết \(f\left( 6 \right) = 1\) và \(\int\limits_0^1 {xf\left( {6x} \right)dx}  = 1\), khi đó \(\int\limits_0^6 {{x^2}f'\left( x \right)dx} \) bằng

Câu 351151: Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Biết \(f\left( 6 \right) = 1\) và \(\int\limits_0^1 {xf\left( {6x} \right)dx}  = 1\), khi đó \(\int\limits_0^6 {{x^2}f'\left( x \right)dx} \) bằng

A.

\(\dfrac{{107}}{3}\)

B. \(34\)

C. \(24\)

D. \( - 36\)

Câu hỏi : 351151

Phương pháp giải:

Sử dụng kết hợp các phương pháp đổi biến và từng phần để tính tích phân.

  • Đáp án : D
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Đặt \(t = 6x \Rightarrow dt = 6dx \Rightarrow dx = \dfrac{{dt}}{6}\).

    Khi đó \(1 = \int\limits_0^1 {xf\left( {6x} \right)dx}  = \int\limits_0^6 {\dfrac{1}{6}t.f\left( t \right).\dfrac{{dt}}{6}}  = \dfrac{1}{{36}}\int\limits_0^6 {t.f\left( t \right)dt} \) \( \Rightarrow \int\limits_0^6 {xf\left( x \right)dx}  = 1.36 = 36\).

    Đặt \(\left\{ \begin{array}{l}{x^2} = u\\f'\left( x \right)dx = dv\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 2xdx\\v = f\left( x \right)\end{array} \right.\)

    \( \Rightarrow \int\limits_0^6 {{x^2}f'\left( x \right)dx}  = \left. {{x^2}f\left( x \right)} \right|_0^6 - \int\limits_0^6 {2xf\left( x \right)dx}  = 36f\left( 6 \right) - 2\int\limits_0^6 {xf\left( x \right)dx}  = 36.1 - 2.36 =  - 36\).

    Chọn D.

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com