Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\) có \(A\left( {3;1} \right),\,\,B\left( {1; - 3} \right)\), đỉnh  \(C\) nằm trên \(Oy\)

Câu hỏi số 351517:
Nhận biết

Cho tam giác \(ABC\) có \(A\left( {3;1} \right),\,\,B\left( {1; - 3} \right)\), đỉnh  \(C\) nằm trên \(Oy\) và trọng tâm \(G\)  nằm trên trục \(Ox\). Tìm tọa độ đỉnh \(C.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:351517
Phương pháp giải

\(G({x_G};{y_G})\)là trọng tâm tam giác ABC: \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\end{array} \right.\)

Giải chi tiết

Theo đề bài ta có: \(C \in Oy;\,\,G \in O\,x \Rightarrow C\left( {0;{y_C}} \right),\,\,G\left( {{x_G};0} \right)\)

\(G\) là trọng tâm tam giác  \( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{x_A} + {x_B} + {x_C} = 3{x_G}}\\{{y_A} + {y_B} + {y_C} = 3{y_G}}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}3 + 1 + 0 = 3{x_G}\\1 - 3 + {y_C} = 0\end{array} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_G} = \frac{4}{3}}\\{{y_C} = 2}\end{array}} \right. \Rightarrow \left\{ \begin{array}{l}G\left( {\frac{4}{3};\,\,0} \right)\\C\left( {0;\,\,2} \right)\end{array} \right..\)

Vậy \(C\left( {0;2} \right).\)

Chọn  A.

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com