Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong mặt phẳng tọa độ \(Oxy,\) cho hàm số \(y =  - {x^2}\)  có đồ thị \(\left( P \right).\) a)

Câu hỏi số 353800:
Vận dụng

Trong mặt phẳng tọa độ \(Oxy,\) cho hàm số \(y =  - {x^2}\)  có đồ thị \(\left( P \right).\)

a) Vẽ đồ thị \(\left( P \right)\)

b) Tìm giá trị của \(m\) để đường thẳng \(\left( d \right):y = 2x - 3m\) (với \(m\)là tham số) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ là \({x_1},{x_2}\) thỏa mãn \({x_1}x_2^2 + {x_2}\left( {3m - 2{x_1}} \right) = 6\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:353800
Phương pháp giải

a) Lập bảng giá trị rồi vẽ đồ thị hàm số

b) Xét phương trình hoành độ giao điểm rồi tìm điều kiện đề phương trình có hai nghiệm phân biệt \( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' > 0\end{array} \right.\)

Biến đổi giả thiết để xuất hiện tích hai nghiệm rồi sử dụng hệ thức Vi-et

Giải chi tiết

a) Vẽ đồ thị \(\left( P \right)\)

Bảng giá trị của hàm số \(y =  - {x^2}.\)

Vẽ đường cong đi qua các điểm có tọa độ \(\left( { - 2; - 4} \right),\left( { - 1; - 1} \right),\left( {0;0} \right),\left( {1; - 1} \right);,\left( {2; - 4} \right)\) ta được parabol \(\left( P \right):y =  - {x^2}.\)

Hình vẽ:

b) Tìm giá trị của \(m\) để đường thẳng \(\left( d \right):y = 2x - 3m\) (với \(m\)là tham số) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ là \({x_1},{x_2}\) thỏa mãn \({x_1}x_2^2 + {x_2}\left( {3m - 2{x_1}} \right) = 6\)

Xét phương trình hoành độ giao điểm của đường thẳng \(\left( d \right)\) và parabol \(\left( P \right)\), ta có

\( - {x^2} = 2x - 3m \Leftrightarrow {x^2} + 2x - 3m = 0\) (*)

Phương trình (*) có \(\Delta ' = {1^2} - 1.\left( { - 3m} \right) = 1 + 3m\)

Để đường thẳng \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ là \({x_1},{x_2}\) thì phương trình (*) có hai nghiệm phân biệt \({x_1},{x_2}\) \( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 \ne 0\,\,\left( {luon\,\,dung} \right)\\1 + 3m > 0\end{array} \right. \Leftrightarrow m >  - \frac{1}{3}.\)

Theo hệ thức Vi-ét ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 2\\{x_1}{x_2} =  - 3m\end{array} \right.\)

Theo bài ra ta có

\({x_1}x_2^2 + {x_2}\left( {3m - 2{x_1}} \right) = 6\)

\(\begin{array}{l} \Leftrightarrow \left( {{x_1}{x_2}} \right).{x_2} + 3m{x_2} - 2{x_1}{x_2} = 6\\ \Leftrightarrow  - 3m{x_2} + 3m{x_2} - 2.\left( { - 3m} \right) = 6\\ \Leftrightarrow 6m = 6\\ \Leftrightarrow m = 1\left( {tm} \right)\end{array}\)

Vậy \(m = 1\) là giá trị cần tìm.

Đáp án cần chọn là: A

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com