Phương trình \(1 + \sin x - \cos x + \sin 2x = 0\) có bao nhiêu nghiệm trên \(\left[ {0;\dfrac{\pi }{2}}
Phương trình \(1 + \sin x - \cos x + \sin 2x = 0\) có bao nhiêu nghiệm trên \(\left[ {0;\dfrac{\pi }{2}} \right)\)?
Đáp án đúng là: A
Quảng cáo
- Đặt \(t = \sin x - \cos x\,\,\left( { - \sqrt 2 \le t \le \sqrt 2 } \right) \Rightarrow \sin x\cos x = \dfrac{{1 - {t^2}}}{2}\).
- Giải phương trình bậc hai đối với \(t\), sau đó tìm nghiệm \(x\).
- Tìm các nghiệm thuộc khoảng đề bài cho.
Đáp án cần chọn là: A
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












