Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(M \in \left( P \right):y = {x^2}\) và \(A\left( {2;0} \right).\) Để \(AM\) ngắn nhất thì:

Câu hỏi số 357521:
Vận dụng

Cho \(M \in \left( P \right):y = {x^2}\) và \(A\left( {2;0} \right).\) Để \(AM\) ngắn nhất thì:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:357521
Phương pháp giải

B1: Tham số hoá toạ độ điểm \(M\)

B2: Tính \(AM.\) Từ đó, quan sát các phương án để loại trừ và tính toán để đưa ra đáp án đúng.

Giải chi tiết

Vì \(M \in \left( P \right):y = {x^2} \Rightarrow M\left( {t;{t^2}} \right) \Rightarrow \) loại C, D.

Ta có: \(AM = \sqrt {{{\left( {t - 2} \right)}^2} + {t^4}} .\) 

Đến đây, cách làm nhanh nhất là ta thay tọa độ điểm \(M\) ở hai đáp án A, B vào công thức tính độ dài \(AM\) để chọn đáp án đúng:

+) Với \(M\left( {1;\,\,1} \right) \Rightarrow AM = \sqrt {{{\left( {1 - 2} \right)}^2} + {1^4}}  = \sqrt 2 .\)

+) Với \(M\left( { - 1;\,\,1} \right) \Rightarrow AM = \sqrt {{{\left( { - 1 - 2} \right)}^2} + {{\left( { - 1} \right)}^4}}  = \sqrt {10} .\)

Vậy \(M\left( {1;\,\,1} \right)\) thỏa mãn bài toán.

Chọn  A.

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com