Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm \(m\) để \(y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx\) có 2 cực trị A và B sao cho AB vuông góc

Câu hỏi số 361554:
Vận dụng

Tìm \(m\) để \(y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx\) có 2 cực trị A và B sao cho AB vuông góc với đường thẳng \(y = x + 2\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:361554
Giải chi tiết

Ta có \(y' = 6{x^2} - 6\left( {m + 1} \right)x + 6m\)

+ Cho \(y' = 0 \Leftrightarrow {x^2} - \left( {m + 1} \right)x + m = 0\)

+ Theo Đlí Viet: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a} = m + 1\\{x_1}.{x_2} = \dfrac{c}{a} = m\end{array} \right.\)

+ Để hàm số có 2 cực trị thì \( \Rightarrow y' = 0\) phải có 2 nghiệm phân biệt .

\( \Rightarrow \Delta  > 0 \Leftrightarrow {\left( {m + 1} \right)^2} - 4m > 0 \Leftrightarrow {m^2} - 2m + 1 > 0 \Leftrightarrow {\left( {m - 1} \right)^2} > 0\,\,\forall m \ne 1\)

Vậy \(m \ne 1\) .

+ Vì \(\Delta \) đẹp \( \Rightarrow \) 2 nghiệm của phương trình là: \(\left[ \begin{array}{l}{x_1} = \dfrac{{m + 1 + m - 1}}{2} = m\\{x_2} = \dfrac{{m + 1 - m + 1}}{2} = 1\end{array} \right.\)

+ Gọi \(A\left( {m; - {m^3} + 3{m^2}} \right),B\left( {1; - 1 + 3m} \right) \Rightarrow \overrightarrow {AB} \left( {1 - m;{m^3} - 3{m^2} + 3m - 1} \right)\)

+ Ta có: d: \(y = x + 2 \Leftrightarrow x - y + 2 = 0\) có vectơ chỉ phương \(\overrightarrow u  = \left( {1; 1} \right)\).

+ Để đường thẳng \(AB\) vuông góc với đường thẳng d thì

\(\overrightarrow {AB}  \bot \overrightarrow u  \Leftrightarrow \overrightarrow {AB} .\overrightarrow u  = 0 \Leftrightarrow \left( {1 - m;{m^3} - 3{m^2} + 3m - 1} \right) \times \left( {1;  1} \right) = 0\) 

\( \Leftrightarrow \left( {1 - m} \right).1 + \left( {{m^3} - 3{m^2} + 3m - 1} \right).1 = 0 \Leftrightarrow \left[ \matrix{
m = 0 \hfill \cr
m = 1\,\,\left( {ktm} \right) \hfill \cr
m = 2 \hfill \cr} \right.\, \Leftrightarrow \left[ \matrix{
m = 0 \hfill \cr
m = 2 \hfill \cr} \right.\,\,\left( {tm} \right)\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com