Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC.\) Tính \(P = \sin A.\cos \left( {B + C} \right) + \cos A.\sin \left( {B + C} \right)?\)

Câu hỏi số 361675:
Vận dụng

Cho tam giác \(ABC.\) Tính \(P = \sin A.\cos \left( {B + C} \right) + \cos A.\sin \left( {B + C} \right)?\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:361675
Phương pháp giải

Nếu \(\alpha  + \beta  = {180^o}\) thì  \(\sin \alpha  = \sin \beta ;{\rm{ cos}}\alpha  =  - \cos \beta .\)

Giải chi tiết

Giả sử  \(\angle A = \alpha ;\,\,\,\angle B + \angle C = \beta \)

\( \Rightarrow P = \sin A.\cos \left( {B + C} \right) + \cos A.\sin \left( {B + C} \right) = \sin \alpha \cos \beta  - \cos \alpha \sin \beta .\)

Trong tam giác \(ABC,\,\,\angle A + \angle B + \angle C = {180^o} \Rightarrow \alpha  + \beta  = {180^o}\)

\( \Rightarrow \sin \alpha  = \sin \beta ;{\rm{ cos}}\alpha  =  - \cos \beta .\)

Vậy \(P = \sin \alpha \cos \beta  + \cos \alpha \sin \beta  =  - \sin \alpha \cos \alpha  + \cos \alpha \sin \alpha  = 0.\) 

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com