Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\). Tính giá trị của biểu thức: \(S = \frac{{{{\sin }^3}\frac{{\angle

Câu hỏi số 361683:
Vận dụng cao

Cho tam giác \(ABC\). Tính giá trị của biểu thức:

\(S = \frac{{{{\sin }^3}\frac{{\angle B}}{2}}}{{{\rm{cos}}\left( {\frac{{\angle A + \angle C}}{2}} \right)}} + \frac{{{\rm{co}}{{\rm{s}}^3}\frac{{\angle B}}{2}}}{{\sin \left( {\frac{{\angle A + \angle C}}{2}} \right)}} - \frac{{\cos \left( {\angle A + \angle C} \right)}}{{\sin \angle B}}.\tan \angle B\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:361683
Phương pháp giải

Áp dụng các công thức sau: \(\left\{ \begin{array}{l}{\sin ^2}\alpha  + c{\rm{o}}{{\rm{s}}^2}\alpha  = 1\\\tan \alpha .\cot \alpha  = 1 \Rightarrow \tan \alpha .\frac{{\cos \alpha }}{{\sin \alpha }} = 1\\\sin \left( {{{90}^0} - \alpha } \right) = c{\rm{os}}\alpha \\\cos \left( {{{180}^0} - \alpha } \right) =  - c{\rm{os}}\alpha \end{array} \right..\)

Giải chi tiết

Ta có: \(\angle A + \angle B + \angle C = {180^o} \Rightarrow \angle A + \angle C = {180^o} - \angle B\)

Lại có: \(\sin \left( {\frac{{{{180}^o} - \angle B}}{2}} \right) = \cos \frac{{\angle B}}{2};\,\,\,\,\cos \left( {\frac{{{{180}^o} - \angle B}}{2}} \right) = \sin \frac{{\angle B}}{2}.\)

  \(\begin{array}{l} \Rightarrow S = \frac{{{{\sin }^3}\frac{{\angle B}}{2}}}{{\cos \left( {\frac{{\angle A + \angle C}}{2}} \right)}} + \frac{{{{\cos }^3}\frac{{\angle B}}{2}}}{{\sin \left( {\frac{{\angle A + \angle C}}{2}} \right)}} - \frac{{\cos \left( {\angle A + \angle C} \right)}}{{\sin \angle B}}.\tan \angle B\\\,\,\,\,\,\,\,\,\,\,\, = \frac{{{{\sin }^3}\frac{{\angle B}}{2}}}{{\cos \left( {\frac{{{{180}^o} - \angle B}}{2}} \right)}} + \frac{{{{\cos }^3}\frac{{\angle B}}{2}}}{{\sin \left( {\frac{{{{180}^o} - \angle B}}{2}} \right)}} - \frac{{\cos \left( {{{180}^o} - \angle B} \right)}}{{\sin \angle B}}.\tan \angle B\\\,\,\,\,\,\,\,\,\, = \frac{{{{\sin }^3}\frac{{\angle B}}{2}}}{{\sin \frac{{\angle B}}{2}}} + \frac{{{{\cos }^3}\frac{{\angle B}}{2}}}{{\cos \frac{{\angle B}}{2}}} - \frac{{ - \cos \angle B}}{{\sin \angle B}}.\tan \angle B\\\,\,\,\,\,\,\,\,\, = {\sin ^2}\frac{{\angle B}}{2} + {\cos ^2}\frac{{\angle B}}{2} + \cot \angle B.\tan \angle B = 1 + 1 = 2.\end{array}\)

Chọn  D

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com