Cho hình vuông \(ABCD.\) Gọi \(I\) là một điểm nằm giữa \(A\) và \(B.\) Tia \(DI\) và tia
Cho hình vuông \(ABCD.\) Gọi \(I\) là một điểm nằm giữa \(A\) và \(B.\) Tia \(DI\) và tia \(CB\) cắt nhau ở \(K.\) Kẻ đường thẳng qua \(D,\) vuông góc với \(DI,\) cắt đường thẳng \(BC\) tại \(L.\) Chứng minh rằng :
a) \(\Delta DIL\) là một tam giác cân.
b) Tổng \(\frac{1}{{D{I^2}}} + \frac{1}{{D{K^2}}}\) không đổi khi \(I\) thay đổi trên cạnh \(AB.\)
Quảng cáo
a) Chứng minh \(DI = DL\) dựa vào \(\Delta DAI = \Delta DCL.\)
b) Áp dụng hệ thức lượng trong \(\Delta DLK\) vuông tại \(D,\) đường cao \(DC\) để chứng minh.
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










