Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ giác \(ABCD\) có \(AB = AC = AD = 20\,\,cm,\,\,\angle B = {60^0}\) và \(\angle A = {90^0}.\)  Kẻ \(BE

Cho tứ giác \(ABCD\) có \(AB = AC = AD = 20\,\,cm,\,\,\angle B = {60^0}\) và \(\angle A = {90^0}.\)  Kẻ \(BE \bot DC\) kéo dài.

Trả lời cho các câu 1, 2, 3 dưới đây:

Câu hỏi số 1:
Vận dụng

Tính \(BE\)?

Đáp án đúng là: A

Câu hỏi:369747
Phương pháp giải

Áp dụng định lý Pitago và các tỉ số lượng giác của góc nhọn để làm bài toán.

Giải chi tiết

Áp dụng định lý Pitago cho \(\Delta ABD\) vuông tại \(A\) ta có:

\(DB = \sqrt {A{B^2} + A{D^2}}  = \sqrt {{{20}^2} + {{20}^2}}  = 20\sqrt 2 \,\,cm.\)

Mà \(\Delta ABD\) có \(AB = AD = 20\,cm \Rightarrow \Delta ABD\) vuông cân tại\(A.\)

\( \Rightarrow \angle ABD = \angle ADB = {45^0}\) (tính chất tam giác cân).

Theo đề bài ta có: \(\left\{ \begin{array}{l}AB = AC = 20\,cm\\\angle ABC = {60^0}\end{array} \right. \Rightarrow \Delta ABC\) là tam giác đều.

\( \Rightarrow BC = 20\,cm;\,\,\,\angle BAC = \angle BCA = {60^0}.\)

Lại có: \(AC = AD = 20\,\,cm \Rightarrow \Delta ACD\) cân tại \(A\)

\(\begin{array}{l} \Rightarrow \angle ACD = \angle ADC = \frac{{{{180}^0} - \angle CAD}}{2} = \frac{{{{180}^0} - \left( {{{90}^0} - \angle BAC} \right)}}{2} = \frac{{{{180}^0} - \left( {{{90}^0} - {{60}^0}} \right)}}{2} = {75^0}.\\ \Rightarrow \angle EDB = \angle ADC - \angle ADB = {75^0} - {45^0} = {30^0}.\end{array}\)

Xét \(\Delta BED\) vuông tại \(E\) ta có:

\(\left\{ \begin{array}{l}BE = BD.\sin \angle EDB = 20\sqrt 2 .\sin {30^0} = 20\sqrt 2 .\frac{1}{2} = 10\sqrt 2 \,\,cm.\\ED = BD.cos\angle EDB = 20\sqrt 2 .cos{30^0} = 20\sqrt 2 .\frac{{\sqrt 3 }}{2} = 10\sqrt 6 \,\,cm.\end{array} \right.\)

Đáp án cần chọn là: A

Câu hỏi số 2:
Vận dụng

Tính \(CE.\)?

Đáp án đúng là: D

Câu hỏi:369748
Phương pháp giải

Áp dụng định lý Pitago và các tỉ số lượng giác của góc nhọn để làm bài toán.

Giải chi tiết

Áp dụng định lý Pitago cho\(\Delta BEC\) vuông tại \(E\) ta có:

\(\begin{array}{l}EC = \sqrt {B{C^2} - B{E^2}}  = \sqrt {{{20}^2} - {{\left( {10\sqrt 2 } \right)}^2}}  = 10\sqrt 2 \,\,cm.\end{array}\)

Đáp án cần chọn là: D

Câu hỏi số 3:
Vận dụng

Tính \(CD\)?

Đáp án đúng là: C

Câu hỏi:369749
Phương pháp giải

Áp dụng định lý Pitago và các tỉ số lượng giác của góc nhọn để làm bài toán.

Giải chi tiết

Ta có: \( CD = ED - EC = 10\sqrt 6  - 10\sqrt 2  = 10\sqrt 2 \left( {\sqrt 3  - 1} \right)\,\,\,cm \approx 10,35\,\,cm\)

Đáp án cần chọn là: C

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com