Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Cho hai chất điểm dao động điều hòa cùng tần số, trên hai đường thẳng song song với trục Ox

Câu hỏi số 371651:
Vận dụng cao

Cho hai chất điểm dao động điều hòa cùng tần số, trên hai đường thẳng song song với trục Ox có phương trình \({{x}_{1}}={{A}_{1}}\cos \left( \omega t+{{\varphi }_{1}} \right);\,\,{{x}_{2}}={{A}_{2}}\cos \left( \omega t+{{\varphi }_{2}} \right)\). Biết rằng giá trị lớn nhất của tổng li độ dao động của hai vật bằng 2 lần khoảng cách cực đại của hai vật theo phương Ox, và độ lệch pha của dao động 1 so với dao động 2 nhỏ hơn \({{90}^{0}}\). Độ lệch pha cực đại giữa \({{x}_{1}},\,\,{{x}_{2}}\) gần giá trị nào nhất sau đây

Đáp án đúng là: B

Quảng cáo

Câu hỏi:371651
Phương pháp giải

Biên độ dao động tổng hợp: \(A=\sqrt{{{A}_{1}}^{2}+{{A}_{2}}^{2}+2{{A}_{1}}{{A}_{2}}\cos \left( {{\varphi }_{1}}-{{\varphi }_{2}} \right)}\)

Khoảng cách lớn nhất giữa hai vật: \({{d}_{\max }}=\sqrt{{{A}_{1}}^{2}+{{A}_{2}}^{2}-2{{A}_{1}}{{A}_{2}}\cos \Delta \varphi }\)

Sử dụng bất đẳng thức Cauchy để tìm cực trị.

Giải chi tiết

Ta có: \(x={{x}_{1}}+{{x}_{2}}\), giá trị lớn nhất của tổng li độ dao động của hai vật:

\(A=\sqrt{{{A}_{1}}^{2}+{{A}_{2}}^{2}+2{{A}_{1}}{{A}_{2}}\cos \Delta \varphi }\)

Khoảng cách lớn nhất giữa hai vật:

\({{d}_{\max }}=\sqrt{{{A}_{1}}^{2}+{{A}_{2}}^{2}-2{{A}_{1}}{{A}_{2}}\cos \Delta \varphi }\)

Theo đề bài ta có: \(A=2{{d}_{\max }}\)

\(\begin{align}& \Rightarrow \sqrt{{{A}_{1}}^{2}+{{A}_{2}}^{2}+2{{A}_{1}}{{A}_{2}}\cos \Delta \varphi }=2\sqrt{{{A}_{1}}^{2}+{{A}_{2}}^{2}-2{{A}_{1}}{{A}_{2}}\cos \Delta \varphi } \\& \Rightarrow {{A}_{1}}^{2}+{{A}_{2}}^{2}+2{{A}_{1}}{{A}_{2}}\cos \Delta \varphi =4\left( {{A}_{1}}^{2}+{{A}_{2}}^{2}-2{{A}_{1}}{{A}_{2}}\cos \Delta \varphi  \right) \\& \Rightarrow 3{{A}_{1}}^{2}+3{{A}_{2}}^{2}-10{{A}_{1}}{{A}_{2}}\cos \Delta \varphi =0 \\& \Rightarrow \cos \Delta \varphi =\frac{3}{5}\frac{{{A}_{1}}^{2}+{{A}_{2}}^{2}}{2{{A}_{1}}{{A}_{2}}} \\\end{align}\)

Áp dụng bất đẳng thức Cauchy, ta có: \({{A}_{1}}^{2}+{{A}_{2}}^{2}\ge 2{{A}_{1}}{{A}_{2}}\)

\(\Rightarrow \frac{{{A}_{1}}^{2}+{{A}_{2}}^{2}}{2{{A}_{1}}{{A}_{2}}}\ge 1\Rightarrow \cos \Delta \varphi \ge \frac{3}{5}\Rightarrow {{\left( \cos \Delta \varphi  \right)}_{\min }}=\frac{3}{5}\Rightarrow \Delta {{\varphi }_{\max }}=53,{{13}^{0}}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com