Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số bậc ba \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị nhận hai điểm \(A\left( {3;0} \right);B\left( {2; - 1} \right)\)làm hai điểm cực trị. Khi đó số điểm cực trị của đồ thị hàm số \(g\left( x \right) = \left| {a{x^2}\left| x \right| + b{x^2} + c\left| x \right| + d} \right|.\)

Câu 373221: Cho hàm số bậc ba \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị nhận hai điểm \(A\left( {3;0} \right);B\left( {2; - 1} \right)\)làm hai điểm cực trị. Khi đó số điểm cực trị của đồ thị hàm số \(g\left( x \right) = \left| {a{x^2}\left| x \right| + b{x^2} + c\left| x \right| + d} \right|.\)

A. 9

B. 11

C. 5

D. 7

Câu hỏi : 373221

Phương pháp giải:

Xác định hàm số.


Vẽ đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) gồm phần 1: đồ thị nằm bên phải Oy (bên trái bỏ).


                                                  Phần 2: là đối xứng của phần 1 qua Oy.


Vẽ đồ thị hàm số của \(y = \left| {f\left( {\left| x \right|} \right)} \right|\)  gồm phần 1: đồ thị nằm trên trục Ox( bên dưới bỏ)


                                                  Phần 2: đối xứng của phần phía dưới Ox qua Ox

  • Đáp án : D
    (22) bình luận (0) lời giải

    Giải chi tiết:

    Gọi hàm số bậc ba có dạng \(y = a{x^3} + b{x^2} + cx + d\,\,\left( {a \ne 0} \right)\).

    Đồ thị hàm số có hai điểm cực trị \(A\left( {3;0} \right),\,\,B\left( {2; - 1} \right)\) nên ta có hệ phương trình:

    \(\left\{ \begin{array}{l}27a + 9b + 3c + d = 0\\8a + 4b + 2c + d =  - 1\\27a + 6b + c = 0\\12a + 4b + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 2\\b = 15\\c =  - 36\\d = 27\end{array} \right. \Rightarrow y =  - 2{x^3} + 15{x^2} - 36x + 27\)

    Ta có đồ thị hàm số \(y = \left| { - 2{x^2}\left| x \right| + 15{x^2} - 36\left| x \right| + 27} \right|\) như sau:

    Dựa vào đồ thị hàm số ta thấy đồ thị hàm số có 7 điểm cực trị.

    Chọn D

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com