Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hãy tìm tam giác vuông có diện tích lớn nhất nếu tổng của một cạnh góc vuông và cạnh huyền

Câu hỏi số 373753:
Vận dụng

Hãy tìm tam giác vuông có diện tích lớn nhất nếu tổng của một cạnh góc vuông và cạnh huyền bằng hằng số \(a\left( {a > 0} \right).\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:373753
Phương pháp giải

- Lập hàm số tính diện tích tam giác theo biến là một cạnh góc vuông.

- Xét hàm tìm GTLN và kết luận.

Giải chi tiết

Gọi số đo cạnh góc vuông \(AB\) là \(x,0 < x < \dfrac{a}{2}\) (vì \(AB + AC = a,AB < AC\))

Khi đó, cạnh huyền \(BC = a-x\), cạnh góc vuông còn lại là: \(AC = \sqrt {B{C^2} - A{B^2}}  = \sqrt {{{(a - x)}^2} - {x^2}} \)

Hay \(AC = \sqrt {{a^2} - 2ax} \)

Diện tích tam giác \(ABC\) là: \(S(x) = \dfrac{1}{2}x\sqrt {{a^2} - 2ax} \)

\(S'(x) = \dfrac{1}{2}\sqrt {{a^2} - 2ax}  - \dfrac{1}{2}\dfrac{{ax}}{{\sqrt {{a^2} - 2ax} }}\)\( = \dfrac{{a(a - 3x)}}{{2\sqrt {{a^2} - 2ax} }}\)

\(S'(x) = 0 \Leftrightarrow x = \dfrac{a}{3}\)

Bảng biến thiên:

Tam giác có diện tích lớn nhất khi \(AB = \dfrac{a}{3};BC = \dfrac{{2a}}{3}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com