Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện \(ABCD\). Gọi \(I,\,\,J\) lần lượt là trung điểm của \(AC\) và \(BC\). Trên cạnh

Câu hỏi số 373943:
Thông hiểu

Cho tứ diện \(ABCD\). Gọi \(I,\,\,J\) lần lượt là trung điểm của \(AC\) và \(BC\). Trên cạnh \(BD\) lấy điểm \(K\) sao cho \(BK = 2KD\). Gọi \(F\) là giao điểm của \(AD\) với mặt phẳng \(\left( {IJK} \right)\). Tính tỉ số \(\dfrac{{FA}}{{FD}}\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:373943
Phương pháp giải

+ Dựng giao tuyến dựa vào các yếu tố song song.

+ Sử dụng định lí Ta-lét.

Giải chi tiết

\(\left\{ \begin{array}{l}\left( {IJK} \right) \supset IJ\\\left( {ABD} \right) \supset AB\\IJ//AB\\K \in \left( {IJK} \right) \cap \left( {ABD} \right)\end{array} \right. \Rightarrow \) Giao tuyến của hai mặt phẳng \(\left( {IJK} \right)\) và \(\left( {ABD} \right)\) là đường thẳng đi qua \(K\) và song song với \(IJ,\,\,AB\).

Trong \(\left( {ABD} \right)\) kẻ \(KF//AB\,\,\left( {F \in AD} \right)\), khi đó ta có \(\left( {IJK} \right) \cap \left( {ABD} \right) = KF \Rightarrow \left( {IJK} \right) \cap AD = F\).

Áp dụng định lí Ta-lét ta có \(\dfrac{{FA}}{{FD}} = \dfrac{{KB}}{{KD}} = 2\).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com